Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 11(12)2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261077

RESUMO

The novel high-affinity tryptophan (Trp)-selective transport system is present at elevated levels in human interferon-γ (IFN-γ)-treated and indoleamine 2,3-dioxygenase 1 (IDO1)-expressing cells. High-affinity Trp uptake into cells results in extracellular Trp depletion and immune suppression. We have previously shown that both IDO1 and tryptophanyl-tRNA synthetase (TrpRS), whose expression levels are increased by IFN-γ, have a crucial function in high-affinity Trp uptake into human cells. Here, we aimed to elucidate the relationship between TrpRS and IDO1 in high-affinity Trp uptake. We demonstrated that overexpression of IDO1 in HeLa cells drastically enhances high-affinity Trp uptake upon addition of purified TrpRS protein to uptake assay buffer. We also clarified that high-affinity Trp uptake by Trp-starved cells is significantly enhanced by the addition of TrpRS protein to the assay buffer. Moreover, we showed that high-affinity Trp uptake is also markedly elevated by the addition of TrpRS protein to the assay buffer of cells overexpressing another Trp-metabolizing enzyme, tryptophan 2,3-dioxygenase (TDO2). Taken together, we conclude that Trp deficiency is crucial for high-affinity Trp uptake mediated by extracellular TrpRS.


Assuntos
Triptofano-tRNA Ligase/fisiologia , Triptofano/deficiência , Transporte Biológico/efeitos dos fármacos , Soluções Tampão , Meios de Cultura , Células HeLa , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/fisiologia , Interferon gama/farmacologia , Interferon gama/fisiologia , Mutação de Sentido Incorreto , Mutação Puntual , Proteínas Recombinantes/metabolismo , Aminoacilação de RNA de Transferência , Triptofano/metabolismo , Triptofano Oxigenase/metabolismo , Triptofano-tRNA Ligase/farmacologia , Regulação para Cima
2.
Photochem Photobiol ; 95(4): 946-950, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30613988

RESUMO

Melanin is rigidly constructed by several nitrogen-containing aromatic rings, and its excess accumulation in skin tissue is closely associated with melanosis. Although visible lasers (wavelength: 600-1000 nm) are conventionally used for the photo-thermolysis of melanocyte, several pigmented nevi are difficult to be treated. Here, we propose an alternate method for targeting the molecular structure of melanin using an infrared free-electron laser (FEL) tuned to 5.8 µm that corresponds to the stretching vibrational mode of carboxylate group. A drastic morphological change on the black-colored surface of melanin powder was observed after the pulse irradiation with power energy of 500 mJ cm-2 , and the minimum irradiation time for damage to the morphology was 1.4 s. Analyses by mass spectroscopy, infrared spectroscopy, and 13 C-nuclear magnetic resonance implied that a pyrrole group was removed by the FEL irradiation. In addition, the FEL irradiation dispersed almost all of the melanoma cells from a culture solution without any influence on other ingredients in the medium, and one-cell analysis by infrared microscopy showed that the structure of melanoma could be substantially damaged by the irradiation. This study proposes the potency of intense mid-infrared laser as novel alternative way to reduce melanin.


Assuntos
Lasers/classificação , Melaninas/química , Linhagem Celular Tumoral , Humanos , Terapia a Laser , Melanoma/radioterapia , Microscopia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...