Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(6): e0269278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35657815

RESUMO

The widening gap between the supply and demand for meat products has increased the need to produce plant-based meat analogs as protein sources. Meat analogs are principally composed of soy-based textured vegetable proteins. Despite ongoing technical developments, one of the unresolved challenges for plant-based meat analogs is the off-flavor from soy, which limits their consumer acceptability. Among the various methods developed for overcoming this challenge, masking the beany flavors with cyclodextrins (CDs) is an attractive, cost-effective, and safe strategy. However, the current established CD treatment method does not meet the requirement for a clean-label. This study aimed to develop more acceptable off-flavor-masking technologies for plant-based patties for modern clean-label preferences using enzymatic methods. We used the cyclodextrin glucanotransferase (CGT), "Amano," as a commercially available food-grade CGT. The CGT-catalyzed reaction in plant-based patties yielded 17.1 g/L CD. As CGT could yield sufficient CD in the patties, we investigated whether CDs produced by CGT could mask the off-flavors released from the plant-based patties. The CGT-treated patties had significantly lower volatilization amounts of the known beany off-flavor-generating compounds compared to the non-treated patties. Moreover, CGT treatment improved the texture of the patties and increased their water- and oil-holding capacity. As CGT is rendered inactive after cooking, it would not be considered an additive. These findings indicated that CDs produced by the CGT reaction could effectively mask off-flavors of meat analogs and improve their physical properties while meeting clean-label requirements.


Assuntos
Ciclodextrinas , Produtos da Carne , Culinária , Glucosiltransferases , Carne/análise , Produtos da Carne/análise
2.
Sci Rep ; 12(1): 1168, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064181

RESUMO

The widening gap between current supply of meat and its future demand has increased the need to produce plant-based meat analogs. Despite ongoing technical developments, one of the unresolved challenges of plant-based meat analogs is to safely and effectively imitate the appearance of raw and cooked animal-based meat, especially the color. This study aimed to develop a more effective and safe browning system for beet red (BR) in plant-based meat analog patties using laccase (LC) and sugar beet pectin (SBP). First, we investigated the synergistic effects of SBP and LC on BR decolorization of meat analog patties. We discovered that the red tones of LC-treated patties containing BR and SBP were remarkably browned after grilling, compared to patties that did not contain SBP. Notably, this color change by LC + SBP was similar to that of beef patties. Additionally, the hardness of LC-treated meat analog patties containing BR was higher than those that did not contain BR. Interestingly, the presence of SBP and LC enhanced the browning reaction and functional properties of meat analogs containing BR. This is the first report on a browning system for meat analogs containing BR using enzymatic methods to the best of our knowledge.

3.
Sci Rep ; 11(1): 16631, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404846

RESUMO

The gap between the current supply and future demand of meat has increased the need to produce plant-based meat analogs. Methylcellulose (MC) is used in most commercial products. Consumers and manufacturers require the development of other novel binding systems, as MC is not chemical-free. We aimed to develop a novel chemical-free binding system for meat analogs. First, we found that laccase (LC) synergistically crosslinks proteins and sugar beet pectin (SBP). To investigate the ability of these SBP-protein crosslinks, textured vegetable protein (TVP) was used. The presence of LC and SBP improved the moldability and binding ability of patties, regardless of the type, shape, and size of TVPs. The hardness of LC-treated patties with SBP reached 32.2 N, which was 1.7- and 7.9-fold higher than that of patties with MC and transglutaminase-treated patties. Additionally, the cooking loss and water/oil-holding capacity of LC-treated patties with SBP improved by up to 8.9-9.4% and 5.8-11.3%, compared with patties with MC. Moreover, after gastrointestinal digestion, free amino nitrogen released from LC-treated patties with SBP was 2.3-fold higher than that released from patties with MC. This is the first study to report protein-SBP crosslinks by LC as chemical-free novel binding systems for meat analogs.


Assuntos
Lacase/metabolismo , Carne , Pectinas/metabolismo , Proteínas/metabolismo , Animais , Catálise , Culinária , Digestão , Eletroforese em Gel de Poliacrilamida , Técnicas In Vitro , Proteínas/química
5.
Biotechnol Lett ; 26(21): 1643-8, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15604813

RESUMO

Conversion of heterocyclic and aromatic aldehydes to the corresponding carboxylic acids was carried out using Acetobacter rancens IFO3297, A. pasteurianus IFO13753 and Serratia liquefaciens LF14. IFO3297 produced 110 g 2-furoic acid l(-1) from furfural with a 95% molar yield. 5-Hydroxymethyl-2-furancarboxylic acid was produced from the corresponding aldehyde by using whole cells LF14. IFO13753 and LF14 both converted isophthalaldehyde, 2,5-furandicarbaldehyde, 2,5-thiophenedicarbaldehyde and 2,2' biphenyldicarbaldehyde to the corresponding formylcarboxylic acid with 86-91% molar yields.


Assuntos
Acetobacter/metabolismo , Aldeídos/metabolismo , Ácidos Carboxílicos/metabolismo , Serratia/metabolismo , Acetobacter/classificação , Biotransformação , Compostos Heterocíclicos/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Oxirredução , Serratia/classificação , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA