Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 34: 102055, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37928443

RESUMO

Insulin-like growth factor I (IGF-I) is a growth-promoting anabolic hormone that fosters cell growth and tissue homeostasis. IGF-I deficiency is associated with several diseases, including growth disorders and neurological and musculoskeletal diseases due to impaired regeneration. Despite the vast regenerative potential of IGF-I, its unfavorable pharmacokinetic profile has prevented it from being used therapeutically. In this study, we resolved these challenges by the local administration of IGF-I mRNA, which ensures desirable homeostatic kinetics and non-systemic, local dose-dependent expression of IGF-I protein. Furthermore, IGF-I mRNA constructs were sequence engineered with heterologous signal peptides, which improved in vitro protein secretion (2- to 6-fold) and accelerated in vivo functional regeneration (16-fold) over endogenous IGF-I mRNA. The regenerative potential of engineered IGF-I mRNA was validated in a mouse myotoxic muscle injury and rabbit spinal disc herniation models. Engineered IGF-I mRNA had a half-life of 17-25 h in muscle tissue and showed dose-dependent expression of IGF-I over 2-3 days. Animal models confirm that locally administered IGF-I mRNA remained at the site of injection, contributing to the safety profile of mRNA-based treatment in regenerative medicine. In summary, we demonstrate that engineered IGF-I mRNA holds therapeutic potential with high clinical translatability in different diseases.

2.
Antimicrob Agents Chemother ; 50(2): 685-93, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16436727

RESUMO

The multidrug-resistant mutant Streptococcus pneumoniae M22 constitutively overexpresses two genes (patA and patB) that encode proteins homologous to known efflux proteins belonging to the ABC transporter family. It is shown here that PatA and PatB were strongly induced by quinolone antibiotics and distamycin in fluoroquinolone-sensitive strains. PatA was very important for growth of S. pneumoniae, and it could not be disrupted in strain M22. PatB appeared to control metabolic activity, particularly in amino acid biosynthesis, and it may have a pivotal role in coordination of the response to quinolone antibiotics. The induction of PatA and PatB by antibiotics showed a pattern similar to that exhibited by SP1861, a homologue of ABC-type transporters of choline and other osmoprotectants. A second group of quinolone-induced transporter genes comprising SP1587 and SP0287, which are homologues of, respectively, oxalate/formate antiporters and xanthine or uracil permeases belonging to the major facilitator family, showed a different pattern of induction by other antibiotics. There was no evidence for the involvement of PmrA, the putative proton-dependent multidrug transporter that has been implicated in norfloxacin resistance, in the response to quinolone antibiotics in either the resistant mutant or the fluoroquinolone-sensitive strains.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana Múltipla , Fluoroquinolonas/farmacologia , Streptococcus pneumoniae/efeitos dos fármacos , Ciprofloxacina/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Norfloxacino/farmacologia , Fenótipo , RNA Mensageiro/análise , Reserpina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...