Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
PLoS One ; 17(10): e0275647, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36223381

RESUMO

Indonesia belongs to endemic areas of Japanese encephalitis (JE), yet data regarding the true risk of disease transmission are lacking. While many seroprevalence studies reported its classic enzootic transmission, data related to the role of bats in the transmission of JE virus are limited. This current study aimed to identify the potential role of bats in the local transmission of the JE virus to aid the ongoing active case surveillance in Indonesia, in order to estimate the transmission risk. Mosquitoes and bats were collected from 11 provinces in Indonesia. The detection of the JE virus used polymerase chain reaction (PCR). Maps were generated to analyze the JE virus distribution pattern. Logistic regression analysis was done to identify risk factors of JE virus transmission. JE virus was detected in 1.4% (7/483) of mosquito pools and in 2.0% (68/3,322) of bat samples. Mosquito species positive for JE virus were Culex tritaeniorhynchus and Cx. vishnui, whereas JE-positive bats belonged to the genera Cynopterus, Eonycteris, Hipposideros, Kerivoula, Macroglossus, Pipistrellus, Rousettus, Scotophilus and Thoopterus. JE-positive mosquitoes were collected at the same sites as the JE-positive bats. Collection site nearby human dwellings (AOR: 2.02; P = 0.009) and relative humidity of >80% (AOR: 2.40; P = 0.001) were identified as independent risk factors for JE virus transmission. The findings of the current study highlighted the likely ongoing risk of JE virus transmission in many provinces in Indonesia, and its potential implications on human health.


Assuntos
Quirópteros , Culex , Culicidae , Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Animais , Humanos , Indonésia/epidemiologia , Prevalência , Vigilância de Evento Sentinela , Estudos Soroepidemiológicos
2.
Front Cell Infect Microbiol ; 11: 705129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307199

RESUMO

Currently, Aedes aegypti, the principal vector of dengue virus in Indonesia, has spread throughout the archipelago. Aedes albopictus is also present. Invasion and high adaptability of the Aedes mosquitoes to all of these areas are closely related to their ecology and biology. Between June 2016 and July 2017, larval and adult mosquito collections were conducted in 43 locations in 25 provinces of Indonesia using standardized sampling methods for dengue vector surveillance. The samples collected were analyzed for polymorphism and phylogenetic relationship using the mitochondrial cox1 gene and the nuclear ribosomal internal transcribed spacer 2 (ITS2). Almost all Ae. aegypti samples collected in this study (89%) belonged to the same haplotype. A similar situation is observed with the nuclear ITS2 marker. Populations of Ae. aegypti characterized few years ago were genetically different. A closely related observation was made with Aedes albopictus for which the current populations are different from those described earlier. Ae. aegypti populations were found to be highly homogenous all over Indonesia with all samples belonging to the same maternal lineage. Although difficult to demonstrate formally, there is a possibility of population replacement. Although to a lower extent, a similar conclusion was reached with Ae. albopictus.


Assuntos
Aedes , Dengue , Animais , Indonésia , Mosquitos Vetores , Filogenia
3.
Front Med (Lausanne) ; 8: 685926, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34169085

RESUMO

Several methods exist to collect and assess the abundance of dengue vector mosquitoes, i.e., morning adult collection, pupal collection, ovitraps, human landing, and larval collection. Several of these methods are officially implemented to monitor mosquito density and make decisions on treatments for dengue control. This monitoring is also constrained by the need to conduct this assessment on a "one point/one day" process, meaning that once the threshold of 100 households is reached, the assessment is made, and the collectors teams move to another place, thus preventing the use of long-term sampling methods. This diversity of methods might be a source of variability and lack of statistical significance. There is also a lack of published data regarding the efficacy of these methods. Furthermore, the Stegomyia indices are shown to be not reliable for assessing the risk of dengue outbreaks. A mosquito survey was, thus, conducted in 39 locations corresponding to 15 dengue endemic provinces in Indonesia by using the different adult and larval collection methods recommended nationwide. A total of 44,675 mosquitoes were collected. The single larva method was the most efficient. Out of a total of 89 dengue-positive pools, the most frequently encountered virus was DENV2, which made up half of the positive samples, followed by DENV3 and DENV1, respectively. Factor analysis of mixed data showed that no correlation could be found between any methods and the presence of dengue virus in mosquitoes. Moreover, no correlation could be found between any methods and the incidence of dengue. There was no consistency in the efficacy of a given method from one site to another. There was no correlation between any of the parameters considered, i.e., method, incidence of dengue, location, and the presence of dengue virus in mosquitoes.

4.
Front Cell Infect Microbiol ; 11: 631508, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968797

RESUMO

Chikungunya is repeatedly affecting Indonesia through successive outbreaks. The Asian genotype has been present in Asia since the late 1950s while the ECSA-IOL (East/Central/South Africa - Indian Ocean Lineage) genotype invaded Asia in 2005. In order to determine the extension of the circulation of the chikungunya virus (CHIKV) in Indonesia, mosquitoes were collected in 28 different sites from 12 Indonesian provinces in 2016-2017. The E1 subunit of the CHIKV envelope gene was sequenced while mosquitoes were genotyped using the mitochondrial cox1 (cytochrome C oxidase subunit 1) gene to determine whether a specific population was involved in the vectoring of CHIKV. A total of 37 CHIKV samples were found in 28 Aedes aegypti, 8 Aedes albopictus and 1 Aedes butleri out of 15,362 samples collected and tested. These viruses, like all Indonesian CHIKV since 2000, belonged to a genotype we propose to call the Asian-Pacific genotype. It also comprises the Yap isolates and viruses having emerged in Polynesia, the Caribbean and South America. They differ from the CHIKV of the Asian genotype found earlier in Indonesia indicating a replacement. These results raise the question of the mechanisms behind this fast and massive replacement.


Assuntos
Aedes , Vírus Chikungunya , Animais , Ásia , Região do Caribe , Genótipo , Indonésia , Filogenia , África do Sul
5.
Int J Parasitol Parasites Wildl ; 14: 280-286, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33898229

RESUMO

The West Kalimantan province in Borneo island, Indonesia belongs to endemic area of Japanese encephalitis (JE) that accounts for approximately 30% of total cases yearly. As the presence of pig holdings is uncommon in West Kalimantan, another reservoir host might have played a role in the local transmission of JE virus in this area. Current study aimed to identify the potential role of bats in the local transmission of JE by performing molecular detection of JE virus in bats and mosquitoes using RT-PCR. Sample collection was performed in 3 districts in West Kalimantan, covering 3 different ecosystems: forest, coastal, and residential areas. Bat collection was performed using mist net and harp net, while mosquito collection was carried out using animal-baited trap and human landing collection. A total of 373 blood samples from bats were tested for JE virus, among which 21 samples (5.6%) showed positive results, mainly from Cynopterus brachyotis (lesser short-nosed fruit bat) found in residential areas. Out of 53 mosquito pools, 3 JE-positive pools of Culex tritaeniorhynchus and Cx. vishnui were collected at the same location as JE-positive bats. Current study showed the first evidence of JE virus detection in several species of Megachiropteran bats in Indonesia, demonstrated the potential role of frugivorous bats in local transmission of JE in West Kalimantan. More aggressive measures are required in JE risk mitigation, particularly in initiating JE vaccination campaign and in avoiding disruption of bats' natural habitats through changes in land-use.

6.
J Vector Borne Dis ; 58(2): 99-105, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35074942

RESUMO

BACKGROUND & OBJECTIVES: This study aimed to review the effectiveness of lactic acid when combined with other types of attractants for Aedes spp. METHODS: A systematic review was conducted according to the protocol for a systematic review and meta-analysis (PRISMA). Literature search used Cinahl, Medline/PubMed, ScienceDirect, ProQuest and Ebsco electronic databases. Research articles used in the systematic review were experimental articles that reported the effectiveness of mosquito traps using lactic acid or a combination of lactic acid with other attractants. RESULTS: From a total of 42 articles reviewed, there were 6 articles fulfilling the inclusion criteria. The highest synergistic combination of lactic acid in the ketone group was shown in the acetone compound, in the sulfides class, dimethyl sulfides, and in the chloroalkanes group, chloroform. The combination of lactic acid with two effective attractants can be seen in the incorporation of ammonia + caproic acid, and for the incorporation of lactic acid with three other effective attractants illustrated by combining ammonia + caproic acid + CO2. INTERPRETATION & CONCLUSION: Lactic acid as an attractant can be combined with other various compounds (ketone compounds, sulfides and chloroalkanes). Lactic acid increases its effectiveness in trapping Ae. aegypti and/or Ae. albopictus if combined with acetone, dimethyl sulfides, and/or chloroform.


Assuntos
Aedes , Dengue , Animais , Dengue/prevenção & controle , Ácido Láctico , Metanálise como Assunto , Controle de Mosquitos , Mosquitos Vetores
7.
Front Public Health ; 8: 328, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793541

RESUMO

Dengue is present in 128 countries worldwide and is still expanding. There is currently no treatment or universally approved vaccine available. Therefore, prevention and control of mosquito vectors remain the most efficient ways of managing the risk of dengue outbreaks. The Stegomyia indices have been developed as quantitative indicators of the risk of dengue outbreaks. However, conflictual data are circulating about their reliability. We report in this article the first extensive study on Stegomyia indices, covering 78 locations of differing environmental and socio-economic conditions, climate, and population density across Indonesia, from West Sumatra to Papua. A total of 65,876 mosquito larvae and pupae were collected for the study. A correlation was found between incidence and human population density. No correlation was found between the incidence of dengue and the Stegomyia indices.


Assuntos
Aedes , Vírus da Dengue , Dengue , Animais , Dengue/epidemiologia , Humanos , Indonésia , Reprodutibilidade dos Testes
8.
Am J Health Behav ; 44(2): 188-199, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32019652

RESUMO

Objectives: In this study, we aimed to assess health beliefs, barriers, and motivations of individuals that will be useful in formulating the appropriate social and behavior change communication (SBCC) campaigns regarding dengue vector control. Methods: We conducted this qualitative study among adult residents of Gergunung and Kajen villages in Klaten, Indonesia. We conducted in-depth interviews (IDIs) and focus group discussions (FGDs) using interview an interview guide. We had audio-recorded interviews transcribed and coded. The analysis focused on general perspectives and practices of behaviors in the attempt of vector control. Results: We recruited 188 participants from 2 villages for the study. Our study revealed knowledge deficits among the villagers. Barriers include incorrect perceptions on disease severity, perceived mosquito breeding places, improper practice on mosquito source reduction, and perceived toxicity of the insecticides. Households tend to weigh the benefits of performing vector control versus perceived benefits. Conclusions: By using the Health Belief Model, a future SBCC campaign should address changing beliefs that DHF is a serious disease, increasing knowledge about mos- quito source reduction and insecticide use, and promoting benefits of performing dengue vector control.


Assuntos
Dengue/prevenção & controle , Modelo de Crenças de Saúde , Adulto , Dengue/transmissão , Feminino , Grupos Focais , Humanos , Indonésia , Masculino , Pessoa de Meia-Idade , Pesquisa Qualitativa
9.
Parasit Vectors ; 12(1): 351, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307517

RESUMO

BACKGROUND: Anopheles maculatus (s.s.) is an important vector of malaria in Indonesia. Previously it was considered the only member of the Maculatus Group present in Indonesia. A novel species was recently identified in the Kulon Progo District in Central Java. Until recently, few investigations have been conducted looking at An. maculatus genetic diversity in Indonesia, including allopatric island populations. METHODS: Indonesian An. maculatus (s.l.) samples were collected in several locations in Java, Lesser Sunda Island group, Sumatra and in Kulon Progo (Yogyakarta, central Java) where a novel species has been identified. Samples from a 30-year-old colony of the Kulon Progo population were also included in the analysis. Maximum-likelihood analysis established the phylogenies of the ITS2 (nuclear) and cox1 (mitochondrial) markers. Putative times of separation were based on cox1 genetic distances. RESULTS: Two species of the Maculatus Group are present in Indonesia. The novel sibling species is more closely related to Anopheles dispar than to An. maculatus (s.s.). Anopheles maculatus (s.s.) samples are homogeneous based on the ITS2 sequences. Indonesian samples and An. dispar belong to the same cox1 maternal lineage and differ from all other known members of the Maculatus Group. Divergence time between the different populations found in Java was estimated using an established cox1 mutation rate. CONCLUSIONS: A novel species within the Maculatus Group, most closely related to An. dispar, is confirmed present in the Kulon Progo area of Central Java. The divergence of this species from An. maculatus (s.s.) is explained by the stable refugia in the Kulon Progo area during the quaternary period of intense volcanic activity throughout most of Java. This novel species awaits detailed morphological description before applying a formal species name. For the interim, it is proposed that the Kulon Progo population be designated An. maculatus var. menoreh to distinguish it from An. maculatus (s.s.).


Assuntos
Anopheles/classificação , Variação Genética , Filogenia , Animais , Ciclo-Oxigenase 1/genética , DNA Intergênico/genética , Indonésia , Ilhas , Malária/transmissão , Mosquitos Vetores/classificação , Mutação
10.
PLoS One ; 14(6): e0218079, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31233517

RESUMO

In the city of Magelang, Indonesia, the distribution of Dengue Haemorhagic Fever (DHF) cases tend to be clustered, ever changing along with human urbanization from 2014 to 2017. Although DHF cases have been less reported in the city of Magelang for the past 5 years, vector control measures by using insecticide space spraying, particularly permethrin, have been continuously performed. Current study aimed to detect kdr mutations associated with pyrethroid resistance in Ae. aegypti and to study possible association between insecticide resistance and DHF case distribution related to human urbanization. The study was a cross sectional study conducted in 3 sub-districts in the city of Magelang, Central Java, Indonesia. Eggs of Ae. aegypti collected from 195 sample households were reared and were tested for resistance to pyrethroids by using PCR. Primers AaSCF1 and AaSCR4, and primers AaSCF7 and AaSCR7 were used in detecting presence of mutation in VGSC IIS6 and IIIS6 gene, respectively. Fragments of amplified DNA were sequenced and were analyzed. Spatio-temporal using Standard Deviational Ellipse (SDE) was performed to obtain mapping of DHF case distribution trends. The total number of DHF case was 380 cases, with the most cases (158) occurred in 2015 and the least cases (66) reported in 2017. DHF case distribution was grouped into several clusters. SDE calculation demonstrated movement of DHF case in the direction to principal arterial road, suggesting link to urbanization. Gene sequencing demonstrated VGSC IIS6 gene mutation (S989P and V1016G) in Ae. aegypti collected from study areas, indicating resistance to permethrin. VGSC IIIS6 gene mutation was not found. Current study concluded that multiple kdr mutations associated with resistance to pyrethroid was detected in Ae. aegypti, and that human urbanization may have a role in the development of such resistance.


Assuntos
Aedes/fisiologia , Resistência a Inseticidas , Urbanização , Sequência de Aminoácidos , Animais , Genes de Insetos , Geografia , Humanos , Indonésia , Proteínas de Insetos/química , Proteínas de Insetos/genética , Mutação/genética
11.
Iran J Public Health ; 48(4): 688-696, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31110979

RESUMO

BACKGROUND: Vector control is still emphasized on the using of chemical insecticide which can cause death of non-target organisms, pollution and vector resistance. Therefore, natural insecticides/larvicides are an alternative to using chemical insecticides to control the mosquito vector. METHODS: Brusatol was isolated from the seeds of Makassar Fruit (Brucea javanica L. Merr). Culex quinquefasciatus larvae were divided into 3 groups, i.e. 6 testing groups and one negative and positive control group. In the negative control group, the larvae were treated with 100 ml aquadest and positive control was treated with temephos 1 ppm. After 24 hours, dead larvae were calculated and the percentage of death was determined. The dead larvae were then examined for morphological changes using a light microscope. RESULTS: The higher of the concentration level of brusatol, the higher number of the death of Cx. quinquefasciatus larvae (P<0.05). The value of brusatol Lethal Concentration 50 to larvae Cx. quinquefasciatus was 0.010 ± 0.122 and value of brusatol Lethal Concentration 90 to larvae Cx. quinquefasciatus was 0.654 ± 0.081 ppm. The higher the concentration of brusatol, the morphological damage of Cx. quinquefasciatus larvae was getting worse and widespread to cause damage to the digestive tract and cuticle. CONCLUSION: Brusatol isolated from the seed of B. javanica (L) Merr have larvicidal activity to the Cx. quinquefasciatus which is potential to be natural larvicide.

12.
Parasit Vectors ; 12(1): 19, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30621763

RESUMO

BACKGROUND: Japanese encephalitis has become a public health threat in Indonesia. Three genotypes have been recorded in Indonesia, i.e. genotype II (GII), genotype III (GIII) and genotype IV (GIV). Genotype I (GI) and genotype V (GV) have never been reported in Indonesia. RESULTS: A Japanese encephalitis virus (JEV) belonging to the genotype I-a (GI-a) has been isolated for the first time from a Culex gelidus mosquito in the Province of Jambi, Indonesia. This virus is related to a 1983 isolate from Thailand whereas the infected Cx. gelidus mosquito belonged to a Chinese haplotype. CONCLUSIONS: Surveillance of JEV and mosquito dissemination is recommended.


Assuntos
Culex/virologia , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/epidemiologia , Genótipo , Mosquitos Vetores/virologia , Animais , Vírus da Encefalite Japonesa (Espécie)/classificação , Vírus da Encefalite Japonesa (Espécie)/isolamento & purificação , Encefalite Japonesa/transmissão , Encefalite Japonesa/virologia , Humanos , Indonésia/epidemiologia , Filogenia
13.
Environ Health Prev Med ; 23(1): 22, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29871615

RESUMO

BACKGROUND: International Health Regulations controls international travel including human movement, disease vector, and imported items to prevent the spread of dengue, especially in seaports, airports, and border crossing posts. This study aimed to determine dengue Transovarial Transmission Index (TTI) and distribution of dengue virus in the areas around Adisucipto Airport of Yogyakarta, Indonesia. METHODS: The study was a descriptive analytic study with cross sectional design, conducted by mapping the spread of the dengue virus and identifying TTI in Adisucipto Airport. A total of 145 ovitraps were installed in both perimeter and buffer areas of the airport. Positive Ovitrap Index (OI), TTI, and serotype of dengue virus were examined. The TTI was identified using immunocytochemistry immunoperoxidase streptavidin biotin complex (IISBC) method in mosquito head squash preparations. RESULTS: OI in the buffer area was 32 (45.1%), whereas OI in the perimeter area was 24 (32.4%). The TTI in the buffer and perimeter areas were 21 (18.3%) and 11 (18.9%), respectively. The TTI was found greater in the Aedes aegypti population compared to the Aedes albopictus population, both in the perimeter area (20% versus 16.7%) and the buffer area (20.3% versus 16.1%). Dengue virus serotype-2 (DENV-2) and dengue virus serotype-3 (DENV-3) were predominantly found in Ae. aegypti and Ae. albopictus. CONCLUSIONS: Buffer areas of Adisucipto Airport of Yogyakarta have higher risk as breeding sites for Aedes spp., predominantly DENV-2 and DENV-3 serotypes. High OI shows that the areas are likely to have higher risk of developing dengue outbreak.


Assuntos
Aedes/virologia , Aeroportos , Vírus da Dengue/isolamento & purificação , Dengue/transmissão , Mosquitos Vetores/virologia , Viagem Aérea , Animais , Estudos Transversais , Dengue/virologia , Vírus da Dengue/classificação , Feminino , Indonésia , Óvulo/virologia , Sorotipagem
14.
J Trop Med ; 2016: 5716785, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27190525

RESUMO

The world will enter the postmillennium development goals 2015 era. The achievements of the millennium development goals (MDGs) as a global development target need to be evaluated. A sustainable new reasonable target is important for neglected tropical diseases (NTD) elimination in Indonesia. This review describes the NTD situation in Indonesia and highlights problems beneath the NTD transmission. Multidisciplinary approach is a promising strategy to help the marginalized people.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...