Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 17(11): 1021-8, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27158812

RESUMO

JBIR-76 and -77 are isofuranonaphthoquinones (IFNQs) isolated from Streptomyces sp. RI-77. Draft genome sequencing and gene disruption analysis of Streptomyces sp. RI-77 showed that a type II polyketide synthase (PKS) gene cluster (ifn cluster) was responsible for the biosynthesis of JBIR-76 and -77. It was envisaged that an octaketide intermediate (C16 ) could be synthesized by the minimal PKS (IfnANO) and that formation of the IFNQ scaffold (C13 ) would therefore require a C-C bond cleavage reaction. An ifnQ disruptant accumulated some shunt products (C15 ), which were presumably produced by spontaneous cyclization of the decarboxylated octaketide intermediate. Recombinant IfnQ catalyzed the Baeyer-Villiger oxidation of 1-(2-naphthyl)acetone, an analogue of the bicyclic octaketide intermediate. Based on these results, we propose a pathway for the biosynthesis of JBIR-76 and -77, involving IfnQ-catalyzed C-C bond cleavage as a key step in the formation of the IFNQ scaffold.


Assuntos
Proteínas de Bactérias/metabolismo , Oxigenases de Função Mista/metabolismo , Naftoquinonas/metabolismo , Streptomyces/química , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Família Multigênica , Naftoquinonas/química , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Streptomyces/metabolismo
2.
J Antibiot (Tokyo) ; 67(3): 231-6, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24220111

RESUMO

Many prenylated indole derivatives are widely distributed in nature. Recently, two Streptomyces prenyltransferases, IptA and its homolog SCO7467, were identified in the biosynthetic pathways for 6-dimethylallylindole (DMAI)-3-carbaldehyde and 5-DMAI-3-acetonitrile, respectively. Here, we isolated a novel prenylated indole derivative, 3-hydroxy-6-dimethylallylindolin (DMAIN)-2-one, based on systematic purification of metabolites from a rare actinomycete, Actinoplanes missouriensis NBRC 102363. The structure of 3-hydroxy-6-DMAIN-2-one was determined by HR-MS and NMR analyses. We found that A. missouriensis produced not only 3-hydroxy-6-DMAIN-2-one but also 6-dimethylallyltryptophan (DMAT) and 6-DMAI when grown in PYM (peptone-yeast extract-MgSO4) medium. We searched the complete genome of A. missouriensis for biosynthesis genes of these compounds and found a gene cluster composed of an iptA homolog (AMIS_22580, named iptA-Am) and a putative tryptophanase gene (AMIS_22590, named tnaA-Am). We constructed a tnaA-Am-deleted (ΔtnaA-Am) strain and found that it produced 6-DMAT but did not produce 6-DMAI or 3-hydroxy-6-DMAIN-2-one. Exogenous addition of 6-DMAI to mutant ΔtnaA-Am resulted in the production of 3-hydroxy-6-DMAIN-2-one. Furthermore, in vitro enzyme assays using recombinant proteins produced by Escherichia coli demonstrated that 6-DMAI was synthesized from tryptophan and dimethylallyl pyrophosphate in the presence of both IptA-Am and TnaA-Am, and that IptA-Am preferred tryptophan to indole as the substrate. From these results, we concluded that the iptA-Am-tnaA-Am gene cluster is responsible for the biosynthesis of 3-hydroxy-6-DMAIN-2-one. Presumably, tryptophan is converted into 6-DMAT by IptA-Am and 6-DMAT is then converted into 6-DMAI by TnaA-Am. 6-DMAI appears to be converted into 3-hydroxy-6-DMAIN-2-one by the function of some unknown oxidases in A. missouriensis.


Assuntos
Compostos Alílicos/isolamento & purificação , Fatores Corda/isolamento & purificação , Indóis/isolamento & purificação , Micromonosporaceae/metabolismo , Compostos Alílicos/química , Compostos Alílicos/metabolismo , Fatores Corda/química , Dimetilaliltranstransferase/metabolismo , Escherichia coli/metabolismo , Genoma Bacteriano , Indóis/química , Indóis/metabolismo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Micromonosporaceae/genética , Família Multigênica , Oxirredutases/metabolismo , Proteínas Recombinantes/metabolismo , Triptofano/metabolismo
3.
J Biol Chem ; 288(47): 34146-34157, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24100027

RESUMO

Type III polyketide synthases (PKSs) show diverse cyclization specificity. We previously characterized two Azotobacter type III PKSs (ArsB and ArsC) with different cyclization specificity. ArsB and ArsC, which share a high sequence identity (71%), produce alkylresorcinols and alkylpyrones through aldol condensation and lactonization of the same polyketomethylene intermediate, respectively. Here we identified a key amino acid residue for the cyclization specificity of each enzyme by site-directed mutagenesis. Trp-281 of ArsB corresponded to Gly-284 of ArsC in the amino acid sequence alignment. The ArsB W281G mutant synthesized alkylpyrone but not alkylresorcinol. In contrast, the ArsC G284W mutant synthesized alkylresorcinol with a small amount of alkylpyrone. These results indicate that this amino acid residue (Trp-281 of ArsB or Gly-284 of ArsC) should occupy a critical position for the cyclization specificity of each enzyme. We then determined crystal structures of the wild-type and G284W ArsC proteins at resolutions of 1.76 and 1.99 Å, respectively. Comparison of these two ArsC structures indicates that the G284W substitution brings a steric wall to the active site cavity, resulting in a significant reduction of the cavity volume. We postulate that the polyketomethylene intermediate can be folded to a suitable form for aldol condensation only in such a relatively narrow cavity of ArsC G284W (and presumably ArsB). This is the first report on the alteration of cyclization specificity from lactonization to aldol condensation for a type III PKS. The ArsC G284W structure is significant as it is the first reported structure of a microbial resorcinol synthase.


Assuntos
Substituição de Aminoácidos , Azotobacter vinelandii/enzimologia , Proteínas de Bactérias/química , Policetídeo Sintases/química , Policetídeos/síntese química , Azotobacter vinelandii/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Mutagênese Sítio-Dirigida , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
4.
J Nat Prod ; 74(12): 2588-91, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22145663

RESUMO

A novel naphthoquinone-like polyketide, JBIR-85 (1), with a unique skeleton and antioxidative activity was isolated from a culture of Streptomyces sp. RI-77. The planar structure of 1 was established on the basis of extensive NMR and MS analyses. The structure of 1 including the absolute configuration was established via X-ray crystallographic analysis. Since 1 exhibits a unique skeleton, we performed feeding experiments to reconfirm the structure and predict the biosynthetic pathway.


Assuntos
Sequestradores de Radicais Livres/isolamento & purificação , Naftoquinonas/isolamento & purificação , Policetídeos/isolamento & purificação , Streptomyces/química , Compostos de Bifenilo/farmacologia , Cristalografia por Raios X , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Conformação Molecular , Estrutura Molecular , Naftoquinonas/química , Ressonância Magnética Nuclear Biomolecular , Picratos/farmacologia , Policetídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...