Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Environ Res ; 258: 119408, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38876417

RESUMO

The use of algae for value-added product and biorefining applications is enchanting attention among researchers in recent years due to its remarkable photosynthetic ability, adaptability, and capacity to accumulate lipids and carbohydrates. Algae biomass, based on its low manufacturing costs, is relatively renewable, sustainable, environmentally friendly and economical in comparison with other species. High production rate of algae provides a unique opportunity for its conversion to biochar with excellent physicochemical properties, viz. high surface area and pore volume, high adsorption capacity, abundant functional groups over surface, etc. Despite several potential algal-biochar, a detailed study on its application for removal of emerging contaminants from wastewater is limited. Therefore, this technical review is being carried out to evaluate the specific elimination of inorganic and organic pollutants from wastewater, with a view to assessing adsorption performances of biochar obtained from various algae species. Species-specific adsorption of emerging pollutants from wastewater have been discussed in the present review. The promising methods like pyrolysis, gasification, dry and wet torrefaction for the production of algae biochar are highlighted. The strategies include chemical and structural modifications of algae biochar for the removal of toxic contaminants have also been considered in the current work. The overall aim of this review is to confer about the synthesis, technological advancements, delineation and application of algae biochar for the treatment of wastewater.

2.
Chemosphere ; 344: 140337, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37797901

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are pervasive in the atmosphere and are one of the emerging pollutants that cause harmful effects in living systems. There are some natural and anthropogenic sources that can produce PAHs in an uncontrolled way. Several health hazards associated with PAHs like abnormality in the reproductive system, endocrine system as well as immune system have been explained. The mutagenic or carcinogenic effects of hydrocarbons in living systems including algae, vertebrates and invertebrates have been discussed. For controlling PAHs, biodegradation has been suggested as an effective and eco-friendly process. Microalgae-based biosorption and biodegradation resulted in the removal of toxic contaminants. Microalgae both in unialgal form and in consortium (with bacteria or fungi) performed good results in bioaccumulation and biodegradation. In the present review, we highlighted the general information about the PAHs, conventional versus advanced technology for removal. In addition microalgae based removal and toxicity is discussed. Furthermore this work provides an idea on modern scientific applications like genetic and metabolic engineering, nanomaterials-based technologies, artificial neural network (ANN), machine learning (ML) etc. As rapid and effective methods for bioremediation of PAHs. With several pros and cons, biological treatments using microalgae are found to be better for PAH removal than any other conventional technologies.


Assuntos
Poluentes Ambientais , Microalgas , Hidrocarbonetos Policíclicos Aromáticos , Animais , Biodegradação Ambiental , Microalgas/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Ambientais/análise , Bactérias/metabolismo
3.
Sci Total Environ ; 870: 161828, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36707000

RESUMO

The microalgae have a great potential as the fourth generation biofuel feedstock to deal with energy crisis, but the cost of production and biomass harvest are the major hurdles in terms of large scale production and applications. Using filamentous fungi to culture targeted alga for biomass accumulation and eventually harvesting is a sustainable way to mitigate environmental impacts. Microalgal co-culture method could be an alternative to overcome limitations and increase biomass yield and lipid accumulation. It was found to be the high feasibility for the production of biofuels from fungi and microalgae using wastewater. This article aimed to state the synergistic approaches, their culture protocols, harvesting procedure and their potential biotechnological applications. Additionally, algal-fungal consortia could digest cellulosic biomass, potentially reducing operating costs as part of industrial need. As a result of co-cultivation, biofuel production could be economically feasible owing to its excellent ability to treat wastewater and be eco-friendly. The implications of the innovative co-cultivation technology have demonstrated the potential for further development based on the policies that have been supported and implemented.


Assuntos
Microalgas , Águas Residuárias , Biocombustíveis/microbiologia , Biotecnologia/métodos , Fungos , Biomassa
4.
Curr Microbiol ; 78(4): 1466-1481, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33661421

RESUMO

The co-cultivation approach using cyanobacteria-Leptolyngbya tenuis and green alga-Chlorella ellipsoidea demonstrated in the present study showed additive and synergistic effects on biomass yield, biomass productivity, lipid yield, lipid productivity, CO2 fixation, and cadmium bioremediation efficiency. The results of co-culture in batch mode revealed about 2-3 times increase in biomass and two times increase in total lipid, when compared to the pure culture batches. The results revealed that co-cultures exhibited significantly high CO2 fixation rate of 2.63  ±  0.09 g/L/d, which is 1.5-2 times better than monocultures (P < 0.05). To explore the bioaccumulation of cadmium by co-cultures and pure cultures, different concentrations of cadmium nitrate was used in flask trials. Cadmium accumulation was observed in the order: co-culture (74%, 0.37 mg/L) > Chlorella (58%, 0.29 mg/L) > Leptolyngbya (50%, 0.25 mg/L) (P < 0.05). In addition, fatty acid composition, CHNS analysis, biodiesel characterization, and biochemical compositions were also determined using co-culture method. The maximum biomass yield, productivity, lipid content, and CO2 fixation rate in cadmium induced co-culture were 3.95  ±  0.13 g/L, 258.88  ±  15.75 mg/L/d, 41.43  ±  0.71%, and 3.21  ±  0.20 g/L/d, respectively which is 1.2, 1.3, 2.3, and 1.2 times higher than the control (P < 0.05). Cadmium induced changes in growth and lipid yield using co-culture suggests cost-effective and eco-friendly production of biodiesel and carbon mitigation.


Assuntos
Chlorella , Cianobactérias , Biocombustíveis , Biomassa , Cádmio , Carbono , Dióxido de Carbono , Sequestro de Carbono , Ácidos Graxos
5.
Sci Total Environ ; 626: 689-702, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29898555

RESUMO

Large influx of excess nutrients into sub-tropical brackish-water habitats is expected to radically affect the algal populations in the heavily populated Sunderbans brackish-water ecozone. Twelve selected brackish-water sites in the Indian Sunderbans were surveyed to investigate the growth performance of mat-forming dominant algal/cyanobacterial macrophytes and their potential for carbon (C) sequestration into hydrologic and pedologic pools. The mats were dominated by particular taxa at different seasons related to physico-chemical properties of the wetland habitats. Different environmental variables and biomass productivity parameters were measured on fortnightly basis to assess the carbon cycle related to dominant algal blooms of the study area. The dominating species at the twelve sites included seven genera (Spirogyra, Rhizoclonium, Ulva, Cladophora, Pithophora, Chaetomorpha) belonging to Chlorophyta, three genera (Polysiphonia, Gracilaria, Catenella) belonging to Rhodophyta and Lyngbya majuscula from cyanobacteria. Multivariate statistical methods indicated that nutrient availability, particularly dissolved P concentration and N:P ratio in the water column, along with salinity in the water column mainly affected biomass yield and C sequestration of mat-forming macrophytes and OC input into water column. However, OC contents of underlying muck proved to be very stable, though small influxes of OC occurred at each bloom. High biomass yields (34-3107 g/m2) of the dominant mat components accumulated enormous stocks of OC, very little of which reaches the pedologic pool. This transient biomass might be utilized as dietary supplements or biofuel feedstocks. Availability of important dietary fatty acids in Spirogyra punctulata, Gracilaria sp., Polysiphonia mollis, Rhizoclonium riparium, R. tortuosum, Pithophora oedogonia and Ulva lactuca was considered as suitability of these species as nutraceuticals. Fatty acid compositions of L. majuscula, Catenella repens, R. tortuosum and Cladophora crystallina were estimated to be applicable for producing biodiesel for usage in sub-tropical climates.


Assuntos
Sequestro de Carbono , Eutrofização , Microbiologia da Água , Áreas Alagadas , Ração Animal , Ciclo do Carbono , Ecossistema , Água Doce/microbiologia , Índia
6.
Bioresour Technol ; 207: 197-204, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26890794

RESUMO

The present study demonstrates the utilization of the algal hydrolysate (AH) prepared from lipid extracted residual harmful bloom-forming cyanobacteria Lyngbya majuscula biomass, as a growth supplement for the cultivation of green microalgae Chlorella vulgaris. BG-11 replacements with AH in different proportions significantly affects the cell count, dry cell weight (DCW), biomass productivity (BP) and pigments concentration. Among all, 25% AH substitution in BG11 media was found to be optimum which enhanced DCW, BP and pigments content by 39.13%, 40.81% and 129.47%, respectively, compared to control. The lipid content (31.95%) was also significantly higher in the 25% AH replacement. The volumetric productivity of neutral lipids (ideal for biodiesel) and total protein content of the cells significantly increased in all AH substitutions. Thus, lipid extracted microalgal biomass residue (LMBR) hydrolysate can be a potential growth stimulating supplement for oleaginous microalgae C. vulgaris.


Assuntos
Biomassa , Lipídeos/isolamento & purificação , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Biocombustíveis/microbiologia , Contagem de Células , Chlorella vulgaris/crescimento & desenvolvimento , Chlorella vulgaris/metabolismo , Clorofila/metabolismo , Hidrólise
7.
Int J Microbiol ; 2015: 275035, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26880924

RESUMO

Increase of total lipid and the proportion of the favorable fatty acids in marine green filamentous macroalga Rhizoclonium africanum (Chlorophyceae) was studied under nitrate and phosphate limitations. These stresses were given by both eliminating and doubling the required amounts of nitrate and phosphate salts in the growth media. A significant twofold increase in total lipid (193.03 mg/g) was achieved in cells in absence of nitrate in the culture medium, followed by phosphate limitation (142.65 mg/g). The intracellular accumulation of neutral lipids was observed by fluorescence microscopy. The scanning electron microscopic study showed the major structural changes under nutrient starvation. Fourier transform infrared spectroscopy (FTIR) revealed the presence of ester (C-O-C stretching), ketone (C-C stretching), carboxylic acid (O-H bending), phosphine (P-H stretching), aromatic (C-H stretching and bending), and alcohol (O-H stretching and bending) groups in the treated cells indicating the high accumulation of lipid hydrocarbons in the treated cells. Elevated levels of fatty acids favorable for biodiesel production, that is, C16:0, C16:1, C18:1, and C20:1, were identified under nitrate- and phosphate-deficient conditions. This study shows that the manipulation of cultural conditions could affect the biosynthetic pathways leading to increased lipid production while increasing the proportion of fatty acids suitable for biodiesel production.

8.
Int J Food Sci ; 2014: 897497, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26904654

RESUMO

Microencapsulation of antioxidant-rich fraction obtained by supercritical carbon dioxide extraction (at 50°C, 500 bar with extraction time of 90 min, and flow rate of CO2 at 2 L/min) of lyophilized biomass of Phormidium valderianum was carried out in a spray dryer using maltodextrin and gum arabic. Microencapsulation conditions that provided the best combination of phytochemical properties such as antioxidant activity, phenolic content, and reducing power with reasonable powder yield were an inlet temperature of 130°C and wall material composition as maltodextrin: gum arabic = 70 : 30. Toxicological study reported that the Anatoxin-a content of this encapsulated powder was below the limit of detection of HPLC. Storage study established that encapsulation of this antioxidant-rich algal extract resulted in eight times enhancement of half-life (T 1/2) values. The release profile of microencapsulated antioxidant-rich fraction from the encapsulated powder was found to follow first order anomalous transport kinetics. Therefore, this microencapsulated algal extract with minimum toxicity is a source of natural antioxidant and could have promising use as novel dietary supplement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...