Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 126(31): 5107-5125, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35901315

RESUMO

Electronic interactions between tetrapyrroles are utilized in natural photosynthetic systems to tune the light-harvesting and energy-/charge-transfer processes in these assemblies. Such interactions also can be employed to tailor the electronic properties of tetrapyrrolic dyads and larger arrays for use in materials science and biomedical research. Here, we have utilized static and time-resolved optical spectroscopy to characterize the optical absorption and emission properties of a set of chlorin and bacteriochlorin dyads with varying degrees of through-bond (TB) and through-space (TS) interactions between the constituent macrocycles. The dyads consist of two chlorins or two bacteriochlorins joined by a linker that utilizes a triple-double-triple-bond (enediyne) motif in which the double-bond portion is an ester-substituted ethylene or o-phenylene unit. The photophysical studies are coupled with density functional theory (DFT) calculations to probe the ground-state molecular orbital (MO) characteristics of the dyads and time-dependent DFT calculations (TDDFT) to elucidate excited-state properties. The latter include electronic characteristics of the singlet excited-state manifold and the absorption transitions to these states from the electronic ground state. A comparison of the MO and calculated spectral properties of each dyad with the linker present versus disrupted (by eliminating the double-bond portion) gives insight into the relative contributions of TB versus TS interactions to the electronic properties of the dyads. The results show that the TB and TS contributions are additive (constructively interfere), which is not always the case for molecular dyads. Most of the dyads have shorter lifetimes of the lowest singlet excited state compared to the parent monomer, which derives from increased S1 → S0 internal conversion. The enhancement is greater for the dyads in benzonitrile than in toluene. The studies provide insights into the nature of the electronic interactions between the constituents in the tetrapyrrole arrays and how these interactions dictate the spectral properties and excited-state decay characteristics.


Assuntos
Fotossíntese , Tetrapirróis , Eletrônica , Transferência de Energia , Análise Espectral , Tetrapirróis/química
2.
J Org Chem ; 84(12): 7851-7862, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117562

RESUMO

Photoisomerization of 3,4-di(methoxycarbonyl)-enediyne linker in hydroporphyrin (chlorin or bacteriochlorin) dyads leads to thermally stable cis isomers, where macrocycles adopt a slipped cofacial mutual geometry with an edge-to-edge distance of ∼3.6 Å (determined by density functional theory (DFT) calculations). Absorption spectra exhibit a significant splitting of the long-wavelength Qy band, which indicates a strong electronic coupling with a strength of V = ∼477 cm-1 that increases to 725 cm-1 upon metalation of hydroporphyrins. Each dyad features a broad, structureless emission band, with large Stokes shift, which is indicative of excimer formation. DFT calculations for dyads show both strong through-bond electronic coupling and through-space electronic interactions, due to the overlap of π-orbitals. Overall, geometry, electronic structure, strength of electronic interactions, and optical properties of reported dyads closely resemble those observed for photosynthetic special pairs. Dyads reported here represent a novel type of photoactive arrays with various modes of electronic interactions between chromophores. Combining through-bond and through-space coupling appears to be a viable strategy to engineer novel optical and photochemical properties in organic conjugated materials.

3.
Bioconjug Chem ; 30(1): 169-183, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30475591

RESUMO

Near infrared (NIR) fluorescent probes are attractive tools for biomedical in vivo imaging due to the relatively deeper tissue penetration and lower background autofluorescence. Activatable probes are turned on only after binding to their target, further improving target to background ratios. However, the number of available activatable NIR probes is limited. In this study, we introduce two types of activatable NIR fluorophores derived from bacteriochlorin: chlorin-bacteriochlorin energy-transfer dyads and boron-dipyrromethene (BODIPY)-bacteriochlorin energy-transfer dyads. These fluorophores are characterized by multiple narrow excitation bands with relatively strong emission in the NIR. Targeted bacteriochlorin-based antibody or peptide probes have been previously limited by aggregation after conjugation. Polyethylene glycol (PEG) chains were added to improve the hydrophilicity without altering pharmacokinetics of the targeting moieties. These PEGylated bacteriochlorin-based activatable fluorophores have potential as targeted activatable, multicolor NIR fluorescent probes for in vivo applications.


Assuntos
Compostos de Boro/química , Corantes Fluorescentes/química , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Polietilenoglicóis/química , Porfirinas/química , Animais , Anticorpos Monoclonais/química , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Camundongos
4.
Inorg Chem ; 57(6): 2977-2988, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29140088

RESUMO

A series of a rigid meso-meso directly linked chlorin-chlorin, chlorin-bacteriochlorin, and bacteriochlorin-bacteriochlorin dyads, including free bases as well as Zn(II), Pd(II), and Cu(II) complexes, has been synthesized, and their absorption, emission, singlet oxygen (1O2) photosensitization, and electronic properties have been examined. Marked bathochromic shifts of the long-wavelength Q y absorption band and increase in fluorescence quantum yields in dyads, in comparison to the corresponding monomers, are observed. Nonsymmetrical dyads (except bacteriochlorin-bacteriochlorin) show two distinctive Q y bands, corresponding to the absorption of each dyad component. A nearly quantitative S1-S1 energy transfer between hydroporphyrins in dyads, leading to an almost exclusive emission of hydroporphyrin with a lower S1 energy, has been determined. Several symmetrical and all nonsymmetrical dyads exhibit a significant reduction in fluorescence quantum yields in solvents of high dielectric constants; this is attributed to the photoinduced electron transfer. The complexation of one macrocycle by Cu(II) or Pd(II) enhances intersystem crossing in the adjacent, free base dyad component, which is manifested by a significant reduction in fluorescence and increase in quantum yield of 1O2 photosensitization.


Assuntos
Metaloporfirinas/síntese química , Metaloporfirinas/efeitos da radiação , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/efeitos da radiação , Cobre/química , Transferência de Energia , Fluorescência , Metaloporfirinas/química , Modelos Químicos , Paládio/química , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/efeitos da radiação , Teoria Quântica , Oxigênio Singlete/química , Zinco/química
5.
J Org Chem ; 82(24): 13068-13075, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29119786

RESUMO

A series of energy transfer arrays, comprising a near-IR absorbing and emitting bacteriochlorin, and BODIPY derivatives with different absorption bands in the visible region (503-668 nm) have been synthesized. Absorption band of BODIPY was tuned by installation of 0, 1, or 2 styryl substituents [2-(2,4,6-trimethoxyphenyl)ethenyl], which leads to derivatives with absorption maxima at 503, 587, and 668 nm, respectively. Efficient energy transfer (>0.90) is observed for each dyad, which is manifested by nearly exclusive emission from bacteriochlorin moiety upon BODIPY excitation. Fluorescence quantum yield of each dyad in nonpolar solvent (toluene) is comparable with that observed for corresponding bacteriochlorin monomer, and is significantly reduced in solvent of high dielectric constants (DMF), most likely by photoinduced electron transfer. Given the availability of diverse BODIPY derivatives, with absorption between 500-700 nm, BODIPY-bacteriochlorin arrays should allow for construction of near-IR emitting agents with multiple and broadly tunable absorption bands. Solvent-dielectric constant dependence of Φf in dyads gives an opportunity to construct environmentally sensitive fluorophores and probes.


Assuntos
Compostos de Boro/química , Porfirinas/química , Bioensaio , Compostos de Boro/síntese química , Raios Infravermelhos
6.
J Org Chem ; 82(12): 6054-6070, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28516773

RESUMO

BODIPY-hydroporphyrin energy transfer arrays allow for development of a family of fluorophores featuring a common excitation band at 500 nm, tunable excitation band in the deep red/near-infrared window, and tunable emission. Their biomedical applications are contingent upon retaining their optical properties in an aqueous environment. Amphiphilic arrays containing PEG-substituted BODIPY and chlorins or bacteriochlorins were prepared and their optical and fluorescence properties were determined in organic solvents and aqueous surfactants. The first series of arrays contains BODIPYs with PEG substituents attached to the boron, whereas in the second series, PEG substituents are attached to the aryl at the meso positions of BODIPY. For both series of arrays, excitation of BODIPY at 500 nm results in efficient energy transfer to and bright emission of hydroporphyrin in the deep-red (640-660 nm) or near-infrared (740-760 nm) spectral windows. In aqueous solution of nonionic surfactants (Triton X-100 and Tween 20) arrays from the second series exhibit significant quenching of fluorescence, whereas properties of arrays from the first series are comparable to those observed in polar organic solvents. Reported arrays possess large effective Stokes shift (115-260 nm), multiple excitation wavelengths, and narrow, tunable deep-red/near-IR fluorescence in aqueous surfactants, and are promising candidates for a variety of biomedical-related applications.


Assuntos
Compostos de Boro/química , Raios Infravermelhos , Porfirinas/química , Tensoativos/química , Compostos de Boro/síntese química , Transferência de Energia , Micelas , Estrutura Molecular , Processos Fotoquímicos , Polietilenoglicóis/química , Água/química
7.
Org Lett ; 18(18): 4590-3, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27603934

RESUMO

Symmetrical, near-infrared absorbing bacteriochlorin dyads exhibit gradual reduction of their fluorescence (intensity and lifetime) and reactive oxygen species photosensitization efficiency (ROS) with increasing solvent dielectric constant ε. For the directly linked dyad, significant reduction is observed even in solvents of moderate ε, while for the dyad containing a 1,4-phenylene linker, reduction is more parallel to an increase in solvent ε. Bacteriochlorin dyads are promising candidates for development of environmentally responsive fluorophores and ROS sensitizers.


Assuntos
Corantes Fluorescentes/química , Fármacos Fotossensibilizantes/química , Porfirinas/química , Espécies Reativas de Oxigênio/química , Raios Infravermelhos , Estrutura Molecular , Solventes/química
8.
J Org Chem ; 80(8): 3858-69, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25803423

RESUMO

We report here the synthesis and characterization of BODIPY-chlorin arrays containing a chlorin subunit, with tunable deep-red (641-685 nm) emission, and one or two BODIPY moieties, absorbing at 504 nm. Two types of arrays were examined: one where BODIPY moieties are attached through a phenylacetylene linker at the 13- or 3,13-positions of chlorin, and a second type where BODIPY is attached at the 10-position of chlorin through an amide linker. Each of the examined arrays exhibits an efficient (≥0.80) energy transfer from BODIPY to the chlorin moiety in both toluene and DMF and exhibits intense fluorescence of chlorin upon excitation of BODIPY at ∼500 nm. Therefore, the effective Stokes shift in such arrays is in the range of 140-180 nm. Dyads with BODIPY attached at the 10-position of chlorin exhibit a bright fluorescence in a range of solvents with different polarities (i.e., toluene, MeOH, DMF, and DMSO). In contrast to this, some of the arrays in which BODIPY is attached at the 3- or at both 3,13-positons of chlorin exhibit significant reduction of fluorescence in polar solvents. Overall, dyads where BODIPY is attached at the 10-position of chlorin exhibit ∼5-fold brighter fluorescence than corresponding chlorin monomers, upon excitation at 500 nm.


Assuntos
Compostos de Boro/química , Porfirinas/química , Fluorescência , Estrutura Molecular , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...