Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MAbs ; 12(1): 1829335, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33103593

RESUMO

The early phase of protein drug development has traditionally focused on target binding properties leading to a desired mode of therapeutic action. As more protein therapeutics pass through the development pipeline; however, it is clear that non-optimal biophysical properties can emerge, particularly as proteins are formulated at high concentrations, causing aggregation or polyreactivity. Such late-stage "developability" problems can lead to delay or failure in traversing the development process. Aggregation propensity is also correlated with increased immunogenicity, resulting in expensive, late-stage clinical failures. Using nucleases-directed integration, we have constructed large mammalian display libraries where each cell contains a single antibody gene/cell inserted at a single locus, thereby achieving transcriptional normalization. We show a strong correlation between poor biophysical properties and display level achieved in mammalian cells, which is not replicated by yeast display. Using two well-documented examples of antibodies with poor biophysical characteristics (MEDI-1912 and bococizumab), a library of variants was created based on surface hydrophobic and positive charge patches. Mammalian display was used to select for antibodies that retained target binding and permitted increased display level. The resultant variants exhibited reduced polyreactivity and reduced aggregation propensity. Furthermore, we show in the case of bococizumab that biophysically improved variants are less immunogenic than the parental molecule. Thus, mammalian display helps to address multiple developability issues during the earliest stages of lead discovery, thereby significantly de-risking the future development of protein drugs.


Assuntos
Anticorpos Monoclonais Humanizados/genética , Anticorpos Monoclonais Humanizados/imunologia , Afinidade de Anticorpos/genética , Técnicas de Visualização da Superfície Celular , Células HEK293 , Humanos
2.
MAbs ; 11(5): 884-898, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31107136

RESUMO

The construction of large libraries in mammalian cells allows the direct screening of millions of molecular variants for binding properties in a cell type relevant for screening or production. We have created mammalian cell libraries of up to 10 million clones displaying a repertoire of IgG-formatted antibodies on the cell surface. TALE nucleases or CRISPR/Cas9 were used to direct the integration of the antibody genes into a single genomic locus, thereby rapidly achieving stable expression and transcriptional normalization. The utility of the system is illustrated by the affinity maturation of a PD-1-blocking antibody through the systematic mutation and functional survey of 4-mer variants within a 16 amino acid paratope region. Mutating VH CDR3 only, we identified a dominant "solution" involving substitution of a central tyrosine to histidine. This appears to be a local affinity maximum, and this variant was surpassed by a lysine substitution when light chain variants were introduced. We achieve this comprehensive and quantitative interrogation of sequence space by combining high-throughput oligonucleotide synthesis with mammalian display and flow cytometry operating at the multi-million scale.


Assuntos
Anticorpos Monoclonais Humanizados/genética , Afinidade de Anticorpos , Sítios de Ligação de Anticorpos/genética , Animais , Sítios de Ligação de Anticorpos/imunologia , Células CHO , Sistemas CRISPR-Cas , Regiões Determinantes de Complementaridade/genética , Cricetulus , Endodesoxirribonucleases , Citometria de Fluxo , Edição de Genes , Células HEK293 , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Mutagênese Sítio-Dirigida , Receptor de Morte Celular Programada 1/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...