Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Eng J ; 4702023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37484781

RESUMO

Development of reversible wet or underwater adhesives remains a grand challenge. Because weakened intermolecular interactions by water molecules or/and low effective contact area cause poor interface to the wet surfaces, which significantly decreases adhesive strength. Herein, a new photocured, bio-based shape memory polymer (SMP) that shows both chemical and structural wet adhesion to various types of surfaces is developed. The SMP is polymerized from three monomers mainly from bio-sources to form linear polymer chains dangled with hydrophobic side chains. The hydrogen acceptor and donor groups in the chains form hydrogen bonding with the surfaces, which is protected by the hydrophobic chains in the interface. The SMP shows tunable phase transition temperature (Tg) of 17-38 °C. In a rubbery state above Tg, the adhesive forms conformable contact with the targeted surfaces. Below Tg, a transition to a glassy state locks the conformed shapes to largely increase the effective contact area. As a result, the adhesive exhibits long-term underwater adhesion of > 15 days with the best adhesion strength of ~ 0.9 MPa. Its applications in leak repair, underwater on-skin sensors were demonstrated. This new, general strategy would pave avenues to designing bio-based, long-lasting, and reversible adhesives from renewable feedstocks for widespread applications.

2.
Sci Adv ; 8(34): eabn2485, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36001656

RESUMO

The excitation-contraction dynamics in cardiac tissue are the most important physiological parameters for assessing developmental state. We demonstrate integrated nanoelectronic sensors capable of simultaneously probing electrical and mechanical cellular responses. The sensor is configured from a three-dimensional nanotransistor with its conduction channel protruding out of the plane. The structure promotes not only a tight seal with the cell for detecting action potential via field effect but also a close mechanical coupling for detecting cellular force via piezoresistive effect. Arrays of nanotransistors are integrated to realize label-free, submillisecond, and scalable interrogation of correlated cell dynamics, showing advantages in tracking and differentiating cell states in drug studies. The sensor can further decode vector information in cellular motion beyond typical scalar information acquired at the tissue level, hence offering an improved tool for cell mechanics studies. The sensor enables not only improved bioelectronic detections but also reduced invasiveness through the two-in-one converging integration.

3.
Soft Matter ; 17(33): 7607-7622, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34397078

RESUMO

The ever-increasing demand for novel polymers with superior properties requires a deeper understanding and exploration of the chemical space. Recently, data-driven approaches to explore the chemical space for polymer design have emerged. Among them, inverse design strategies for designing polymers with specific properties have evolved to be a significant materials informatics platform by learning hidden knowledge from materials data as well as smartly navigating the chemical space in an optimized way. In this review, we first summarize the progress in the representation of polymers, a prerequisite step for the inverse design of polymers. Then, we systematically introduce three data-driven strategies implemented for the inverse design of polymers, i.e., high-throughput virtual screening, global optimization, and generative models. Finally, we discuss the challenges and opportunities of the data-driven strategies as well as optimization algorithms employed in the inverse design of polymers.

4.
ACS Appl Mater Interfaces ; 13(11): 12719-12725, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33326205

RESUMO

Three-dimensional (3D) morphing structures with multistable shapes that can be quantitatively and reversibly altered are highly desired in many potential applications ranging from soft robots to wearable electronics. In this study, we present a 4D printing method for fabricating multistable shape-morphing structures that can be quantitatively controlled by the applied strains. The structures are printed by a two-nozzle 3D printer that can spatially distribute phase change wax microparticles (MPs) in the elastomer matrix. The wax MPs can retain the residual strain after the prestrained elastomer composite is relaxed because of the solid-liquid phase change. Thanks to high design freedom of the 3D printing, spatial distribution of the wax MPs can be programmed, leading to an anisotropic stress field in the elastomer composite. This causes the out-of-plane deformations such as curling, folding, and buckling. These deformations are multistable and can be reprogrammed because of the reversible phase change of the wax MPs. What's more, characteristics of deformations such as curvatures and folding angles are linearly dependent on the applied strains, suggesting that these deformations are quantitatively controllable. Finally, the applications of the strained-tailored multistable shape morphing 3D structures in the assembly of 3D electronics and adaptive wearable sensors were demonstrated.

5.
Nat Commun ; 11(1): 6325, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303761

RESUMO

Responsive soft materials capable of exhibiting various three-dimensional (3D) shapes under the same stimulus are desirable for promising applications including adaptive and reconfigurable soft robots. Here, we report a laser rewritable magnetic composite film, whose responsive shape-morphing behaviors induced by a magnetic field can be digitally and repeatedly reprogrammed by a facile method of direct laser writing. The composite film is made from an elastomer and magnetic particles encapsulated by a phase change polymer. Once the phase change polymer is temporarily melted by transient laser heating, the orientation of the magnetic particles can be re-aligned upon change of a programming magnetic field. By the digital laser writing on selective areas, magnetic anisotropies can be encoded in the composite film and then reprogrammed by repeating the same procedure, thus leading to multimodal 3D shaping under the same actuation magnetic field. Furthermore, we demonstrated their functional applications in assembling multistate 3D structures driven by the magnetic force-induced buckling, fabricating multistate electrical switches for electronics, and constructing reconfigurable magnetic soft robots with locomotion modes of peristalsis, crawling, and rolling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...