Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 8(2): 212-23, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16547866

RESUMO

Upon exposure to waterlogged growing conditions two-year-old alder trees reduced total root mass. Roots were concentrated in the uppermost soil horizon, and only few coarse roots penetrated into deeper soil layers. Root porosity was only slightly affected and did not exceed 8 % in fine roots. Porosity of coarse roots was higher (27 %) but unaffected by growing conditions. The stem base area covered by lenticels increased strongly and so did the cross section diameter of the stem base. The latter showed a highly significant correlation with O (2) transport into the roots, measured by a Clark type oxygen electrode. Exposure of the lower 5 cm of the stem base, where lenticels were concentrated, to pure N (2) led to a cessation of O (2) transport, confirming that lenticels were the major site of air entry into the stem. In alder plants grown under waterlogged conditions, temperature had a pronounced effect on O (2) gas exchange of the root system. The temperature compensation point, i.e., the temperature where O (2) transport equals O (2) consumption by respiration, was 10.5 degrees C for the entire root system, when measured in a range of 0.15 - 0.20 mmol dissolved O (2) L (-1), which is typical for an open water surface equilibrated with air. O (2) net flow was inversely related to O (2) concentration in the rooting media, indicating that higher root and microbial respiration induced higher net fluxes of O (2) into the root system. With 0.04 mmol dissolved O (2) L (-1) nutrient solution, the temperature compensation point increased to 20 degrees C. Measurement of O (2) gradients in the rhizosphere of agar-embedded roots using O (2) microelectrodes showed a preference for O (2) release in the tip region of coarse roots. Increasing stem temperature over air temperature by 5 degrees C stimulated O (2) flux into the roots as suggested by the model of thermo-osmotic gas transport. However determination of stem and air temperature in a natural alder swamp in northern Germany revealed that within the experimental period of almost one year, temperature gradients required for thermo-osmotic gas transport were very seldom. From this it is concluded that under natural conditions in northern Germany, oxygen diffusion along the stem into the root system is driven by O (2) concentration gradients rather than by thermo-osmosis.


Assuntos
Alnus/metabolismo , Oxigênio/metabolismo , Raízes de Plantas/metabolismo , Alnus/crescimento & desenvolvimento , Anaerobiose , Ecossistema , Caules de Planta/metabolismo , Solo , Temperatura , Fatores de Tempo , Água
2.
Protoplasma ; 227(1): 3-9, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16389488

RESUMO

Light-induced generation of reactive oxygen species (ROS) in 2-week-old leaves of Arabidopsis thaliana was studied by means of the ROS-sensitive dyes nitroblue tetrazolium (NBT) and 5-(and-6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate (DCF-DA). Superposition of pictures of chlorophyll fluorescence and DCF fluorescence indicated that the origin of ROS was in the chloroplasts. Experiments were done with zero, 0.1, or 10 mM NaHCO3 in the infiltration medium. Energy quenching in photosystem II was higher under low CO2 concentrations as measured by chlorophyll fluorescence. DCF fluorescence showed that CO2 deficiency led to an increase of ROS generation. In contrast, the photosystem II inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea reduced the light-induced increase of DCF fluorescence. This indicates that ROS production does not primarily result from over-reduction of photosystem II as caused by impeding electron flow in the electron transfer chain. More likely, it is an effect of diverting electron flux normally aimed at carboxylation in the Calvin cycle to other sinks more prone to the generation of toxic radicals. There was no significant effect of salicyl hydroxamate (a blocker of the alternative oxidase), showing that the mitochondrial electron transfer chain seems to play a minor role as already indicated by the superposition of chlorophyll and DCF fluorescence.


Assuntos
Arabidopsis/metabolismo , Dióxido de Carbono/fisiologia , Fotossíntese , Folhas de Planta/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Diurona/farmacologia , Fluoresceínas/farmacologia
3.
J Exp Bot ; 51(351): 1721-32, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11053462

RESUMO

Strategies for avoiding ion accumulation in leaves of plants grown at high concentration of NaCl (100 mol m(-3)) in the rooting media, i.e. retranslocation via the phloem and leaching from the leaf surface, were quantified for fully developed leaves of maize plants cultivated hydroponically with or without salt, and with or without sprinkling (to induce leaching). Phloem sap, apoplastic fluid, xylem sap, solutes from leaf and root tissues, and the leachate were analysed for carbohydrates, amino acids, malate, and inorganic ions. In spite of a reduced growth rate Na(+) and Cl(-) concentrations in the leaf apoplast remained relatively low (about 4-5 mol m(-3)) under salt treatment. Concentrations of Na(+) and Cl(-) in the phloem sap of salt-treated maize did not exceed 12 and 32 mol m(-3), respectively, and thus remained lower than described for other species. However, phloem transport rates of these ions were higher than reported for other species. The relatively high translocation rate of ions found in maize may be due to the higher carbon translocation rate observed for C(4) plants as opposed to C(3) plants. Approximately 13-36% of the Na(+) and Cl(-) imported into the leaves through the xylem were exported by the phloem. It is concluded that phloem transport plays an important role in controlling the NaCl content of the leaf in maize. Surprisingly, leaching by artificial rain did not affect plant growth. Ion concentrations in the leachate were lower than reported for other plants but increased with NaCl treatment.


Assuntos
Cloreto de Sódio/administração & dosagem , Zea mays/metabolismo , Transporte Biológico , Íons , Folhas de Planta/metabolismo
4.
Plant J ; 18(6): 643-50, 1999 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10417715

RESUMO

Aluminium, the most abundant metal in the earth's crust, is highly toxic to most plant species. One of the prevailing dogmas is that aluminium exerts this effect by disrupting cellular calcium homeostasis. However, recent research gives strongly conflicting results: aluminium was shown to provoke either an increase or a decrease in cytosolic free calcium concentration ([Ca2+]c). To solve this question, we have adopted a novel approach: [Ca2+]c measurements in intact plant roots as opposed to isolated cells, and the correlative measurements of intracellular and external pH. The results obtained show that plant roots respond to low external pH by a sustained elevation in [Ca2+]c. In the presence of aluminium, this pH-mediated elevation in [Ca2+]c does not occur, therefore any potential calcium-mediated protection against low pH is likely to be irreversibly inhibited. The severity of the inhibitory effect of aluminium on [Ca2+]c depends on the concentration of external calcium, thus perhaps explaining why the effects of aluminium toxicity are ameliorated in calcium-rich soils. It seems possible that a primary toxic effect of aluminium might be to impair calcium-mediated plant defence responses against low pH.


Assuntos
Alumínio/toxicidade , Cálcio/metabolismo , Citosol/metabolismo , Concentração de Íons de Hidrogênio , Equorina/genética , Arabidopsis/metabolismo , Bloqueadores dos Canais de Cálcio/toxicidade , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo
5.
FEBS Lett ; 405(3): 390-3, 1997 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-9108324

RESUMO

Cytosolic Ca2+ activity ([Ca2+]cy) and membrane potential were measured simultaneously in the unicellular green alga Eremosphaera viridis. Steady state [Ca2+]cy was about 160 nM. A 'light-off' stimulus induced a transient elevation of [Ca2+]cy ([Ca2+]cy spike) in parallel with a transient hyperpolarization of the plasma membrane. Caffeine and Sr2+, known to release Ca2+ from intracellular stores in animal cells, induced repetitive [Ca2+]cy spikes in Eremosphaera which were always accompanied by parallel repetitive transient hyperpolarizations. These transient hyperpolarizations could be used as an indicator for [Ca2+]cy spikes. Repetitive [Ca2+]cy spikes in Eremosphaera were similar to repetitive [Ca2+]cy spikes in excitable animal cells. The mechanisms underlying these [Ca2+]cy oscillations seem to be comparable in animal and plant cells.


Assuntos
Cálcio/fisiologia , Cafeína/farmacologia , Cálcio/farmacologia , Clorófitas , Citosol/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Periodicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...