Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20670, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001346

RESUMO

During the COVID-19 pandemic, wastewater surveillance of the SARS CoV-2 virus has been demonstrated to be effective for population surveillance at the county level down to the building level. At the University of California, San Diego, daily high-resolution wastewater surveillance conducted at the building level is being used to identify potential undiagnosed infections and trigger notification of residents and responsive testing, but the optimal determinants for notifications are unknown. To fill this gap, we propose a pipeline for data processing and identifying features of a series of wastewater test results that can predict the presence of COVID-19 in residences associated with the test sites. Using time series of wastewater results and individual testing results during periods of routine asymptomatic testing among UCSD students from 11/2020 to 11/2021, we develop hierarchical classification/decision tree models to select the most informative wastewater features (patterns of results) which predict individual infections. We find that the best predictor of positive individual level tests in residence buildings is whether or not the wastewater samples were positive in at least 3 of the past 7 days. We also demonstrate that the tree models outperform a wide range of other statistical and machine models in predicting the individual COVID-19 infections while preserving interpretability. Results of this study have been used to refine campus-wide guidelines and email notification systems to alert residents of potential infections.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , Pandemias , Fatores de Tempo , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , Aprendizado de Máquina
2.
Nature ; 609(7925): 101-108, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35798029

RESUMO

As SARS-CoV-2 continues to spread and evolve, detecting emerging variants early is critical for public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, especially in areas with limited resources, participation, or testing and/or sequencing capacity, which can also introduce biases1-3. SARS-CoV-2 RNA concentration in wastewater successfully tracks regional infection dynamics and provides less biased abundance estimates than clinical testing4,5. Tracking virus genomic sequences in wastewater would improve community prevalence estimates and detect emerging variants. However, two factors limit wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. Here we resolve these critical issues to perform a high-resolution, 295-day wastewater and clinical sequencing effort, in the controlled environment of a large university campus and the broader context of the surrounding county. We developed and deployed improved virus concentration protocols and deconvolution software that fully resolve multiple virus strains from wastewater. We detected emerging variants of concern up to 14 days earlier in wastewater samples, and identified multiple instances of virus spread not captured by clinical genomic surveillance. Our study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Vigilância Epidemiológica Baseada em Águas Residuárias , Águas Residuárias , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Humanos , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Análise de Sequência de RNA , Águas Residuárias/virologia
3.
medRxiv ; 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35411350

RESUMO

As SARS-CoV-2 continues to spread and evolve, detecting emerging variants early is critical for public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, especially in areas with limited resources, participation, or testing/sequencing capacity, which can also introduce biases. SARS-CoV-2 RNA concentration in wastewater successfully tracks regional infection dynamics and provides less biased abundance estimates than clinical testing. Tracking virus genomic sequences in wastewater would improve community prevalence estimates and detect emerging variants. However, two factors limit wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. Here, we resolve these critical issues to perform a high-resolution, 295-day wastewater and clinical sequencing effort, in the controlled environment of a large university campus and the broader context of the surrounding county. We develop and deploy improved virus concentration protocols and deconvolution software that fully resolve multiple virus strains from wastewater. We detect emerging variants of concern up to 14 days earlier in wastewater samples, and identify multiple instances of virus spread not captured by clinical genomic surveillance. Our study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...