Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Wiley Interdiscip Rev RNA ; 13(2): e1681, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34227247

RESUMO

The N6-methyladenosine (m6A) RNA methyltransferase METTL16 is an emerging player in the RNA modification landscape of the human cell. Originally thought to be a ribosomal RNA methyltransferase, it has now been shown to bind and methylate the MAT2A messenger RNA (mRNA) and U6 small nuclear RNA (snRNA). It has also been shown to bind the MALAT1 long noncoding RNA and several other RNAs. METTL16's methyltransferase domain contains the Rossmann-like fold of class I methyltransferases and uses S-adenosylmethionine (SAM) as the methyl donor. It has an RNA methylation consensus sequence of UACAGARAA (modified A underlined), and structural requirements for its known RNA interactors. In addition to the methyltransferase domain, METTL16 protein has two other RNA binding domains, one of which resides in a vertebrate conserved region, and a putative nuclear localization signal. The role of METTL16 in the cell is still being explored, however evidence suggests it is essential for most cells. This is currently hypothesized to be due to its role in regulating the splicing of MAT2A mRNA in response to cellular SAM levels. However, one of the more pressing questions remaining is what role METTL16's methylation of U6 snRNA plays in splicing and potentially cellular survival. METTL16 also has several other putative coding and noncoding RNA interactors but the definitive methylation status of those RNAs and the role METTL16 plays in their life cycle is yet to be determined. Overall, METTL16 is an intriguing RNA binding protein and methyltransferase whose important functions in the cell are just beginning to be understood. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.


Assuntos
Metiltransferases , RNA Longo não Codificante , Humanos , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , S-Adenosilmetionina/metabolismo
2.
PLoS One ; 15(1): e0227647, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31940410

RESUMO

mRNA modification by N6-methyladenosine (m6A) is involved in many post-transcriptional regulation processes including mRNA stability, splicing and promotion of translation. Accordingly, the recently identified mRNA methylation complex containing METTL3, METTL14, and WTAP has been the subject of intense study. However, METTL16 (METT10D) has also been identified as an RNA m6A methyltransferase that can methylate both coding and noncoding RNAs, but its biological role remains unclear. While global studies have identified many potential RNA targets of METTL16, only a handful, including the long noncoding RNA MALAT1, the snRNA U6, as well as the mRNA MAT2A have been verified and/or studied to any great extent. In this study we identified/verified METTL16 targets by immunoprecipitation of both endogenous as well as exogenous FLAG-tagged protein. Interestingly, exogenously overexpressed METTL16 differed from the endogenous protein in its relative affinity for RNA targets which prompted us to investigate METTL16's localization within the cell. Surprisingly, biochemical fractionation revealed that a majority of METTL16 protein resides in the cytoplasm of a number of cells. Furthermore, siRNA knockdown of METTL16 resulted in expression changes of a few mRNA targets suggesting that METTL16 may play a role in regulating gene expression. Thus, while METTL16 has been reported to be a nuclear protein, our findings suggest that METTL16 is also a cytoplasmic methyltransferase that may alter its RNA binding preferences depending on its cellular localization. Future studies will seek to confirm differences between cytoplasmic and nuclear RNA targets in addition to exploring the physiological role of METTL16 through long-term knockdown.


Assuntos
Metiltransferases/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Citoplasma/metabolismo , Células HEK293 , Células HeLa , Humanos , Metionina Adenosiltransferase/genética , Metilação , Proteínas Nucleares/genética , Splicing de RNA/genética , Estabilidade de RNA/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , S-Adenosilmetionina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...