Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 44(4): 2074-2088, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33074802

RESUMO

Visual localization enables autonomous vehicles to navigate in their surroundings and augmented reality applications to link virtual to real worlds. Practical visual localization approaches need to be robust to a wide variety of viewing conditions, including day-night changes, as well as weather and seasonal variations, while providing highly accurate six degree-of-freedom (6DOF) camera pose estimates. In this paper, we extend three publicly available datasets containing images captured under a wide variety of viewing conditions, but lacking camera pose information, with ground truth pose information, making evaluation of the impact of various factors on 6DOF camera pose estimation accuracy possible. We also discuss the performance of state-of-the-art localization approaches on these datasets. Additionally, we release around half of the poses for all conditions, and keep the remaining half private as a test set, in the hopes that this will stimulate research on long-term visual localization, learned local image features, and related research areas. Our datasets are available at visuallocalization.net, where we are also hosting a benchmarking server for automatic evaluation of results on the test set. The presented state-of-the-art results are to a large degree based on submissions to our server.


Assuntos
Algoritmos
2.
Int J Comput Vis ; 129(4): 821-844, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720404

RESUMO

Visual Localization is one of the key enabling technologies for autonomous driving and augmented reality. High quality datasets with accurate 6 Degree-of-Freedom (DoF) reference poses are the foundation for benchmarking and improving existing methods. Traditionally, reference poses have been obtained via Structure-from-Motion (SfM). However, SfM itself relies on local features which are prone to fail when images were taken under different conditions, e.g., day/night changes. At the same time, manually annotating feature correspondences is not scalable and potentially inaccurate. In this work, we propose a semi-automated approach to generate reference poses based on feature matching between renderings of a 3D model and real images via learned features. Given an initial pose estimate, our approach iteratively refines the pose based on feature matches against a rendering of the model from the current pose estimate. We significantly improve the nighttime reference poses of the popular Aachen Day-Night dataset, showing that state-of-the-art visual localization methods perform better (up to 47%) than predicted by the original reference poses. We extend the dataset with new nighttime test images, provide uncertainty estimates for our new reference poses, and introduce a new evaluation criterion. We will make our reference poses and our framework publicly available upon publication.

3.
IEEE Trans Pattern Anal Mach Intell ; 43(4): 1293-1307, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31722474

RESUMO

We seek to predict the 6 degree-of-freedom (6DoF) pose of a query photograph with respect to a large indoor 3D map. The contributions of this work are three-fold. First, we develop a new large-scale visual localization method targeted for indoor spaces. The method proceeds along three steps: (i) efficient retrieval of candidate poses that scales to large-scale environments, (ii) pose estimation using dense matching rather than sparse local features to deal with weakly textured indoor scenes, and (iii) pose verification by virtual view synthesis that is robust to significant changes in viewpoint, scene layout, and occlusion. Second, we release a new dataset with reference 6DoF poses for large-scale indoor localization. Query photographs are captured by mobile phones at a different time than the reference 3D map, thus presenting a realistic indoor localization scenario. Third, we demonstrate that our method significantly outperforms current state-of-the-art indoor localization approaches on this new challenging data. Code and data are publicly available.

4.
IEEE Trans Pattern Anal Mach Intell ; 43(3): 814-829, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-31535984

RESUMO

Accurate visual localization is a key technology for autonomous navigation. 3D structure-based methods employ 3D models of the scene to estimate the full 6 degree-of-freedom (DOF) pose of a camera very accurately. However, constructing (and extending) large-scale 3D models is still a significant challenge. In contrast, 2D image retrieval-based methods only require a database of geo-tagged images, which is trivial to construct and to maintain. They are often considered inaccurate since they only approximate the positions of the cameras. Yet, the exact camera pose can theoretically be recovered when enough relevant database images are retrieved. In this paper, we demonstrate experimentally that large-scale 3D models are not strictly necessary for accurate visual localization. We create reference poses for a large and challenging urban dataset. Using these poses, we show that combining image-based methods with local reconstructions results in a higher pose accuracy compared to state-of-the-art structure-based methods, albeight at higher run-time costs. We show that some of these run-time costs can be alleviated by exploiting known database image poses. Our results suggest that we might want to reconsider the need for large-scale 3D models in favor of more local models, but also that further research is necessary to accelerate the local reconstruction process.

5.
Artigo em Inglês | MEDLINE | ID: mdl-31613751

RESUMO

We address the problem of mesh reconstruction from live RGB-D video, assuming a calibrated camera and poses provided externally (e.g., by a SLAM system). In contrast to most existing approaches, we do not fuse depth measurements in a volume but in a dense surfel cloud. We asynchronously (re)triangulate the smoothed surfels to reconstruct a surface mesh. This novel approach enables to maintain a dense surface representation of the scene during SLAM which can quickly adapt to loop closures. This is possible by deforming the surfel cloud and asynchronously remeshing the surface where necessary. The surfel-based representation also naturally supports strongly varying scan resolution. In particular, it reconstructs colors at the input camera's resolution. Moreover, in contrast to many volumetric approaches, ours can reconstruct thin objects since objects do not need to enclose a volume. We demonstrate our approach in a number of experiments, showing that it produces reconstructions that are competitive with the state-of-the-art, and we discuss its advantages and limitations. The algorithm (excluding loop closure functionality) is available as open source at https://github.com/puzzlepaint/surfelmeshing.

6.
IEEE Trans Pattern Anal Mach Intell ; 39(9): 1744-1756, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27662671

RESUMO

Accurately determining the position and orientation from which an image was taken, i.e., computing the camera pose, is a fundamental step in many Computer Vision applications. The pose can be recovered from 2D-3D matches between 2D image positions and points in a 3D model of the scene. Recent advances in Structure-from-Motion allow us to reconstruct large scenes and thus create the need for image-based localization methods that efficiently handle large-scale 3D models while still being effective, i.e., while localizing as many images as possible. This paper presents an approach for large scale image-based localization that is both efficient and effective. At the core of our approach is a novel prioritized matching step that enables us to first consider features more likely to yield 2D-to-3D matches and to terminate the correspondence search as soon as enough matches have been found. Matches initially lost due to quantization are efficiently recovered by integrating 3D-to-2D search. We show how visibility information from the reconstruction process can be used to improve the efficiency of our approach. We evaluate the performance of our method through extensive experiments and demonstrate that it offers the best combination of efficiency and effectiveness among current state-of-the-art approaches for localization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...