Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microbiol Methods ; 123: 94-100, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26883620

RESUMO

To ensure quality management during the production processes of probiotics and for efficacy testing in vivo, accurate tools are needed for the identification and quantification of probiotic strains. In this study, a strain-specific qPCR assay based on Suppression Subtractive Hybridisation (SSH) for identifying unique sequences, was developed to quantify the strain Bifidobacterium animalis BAN in broiler feed. Seventy potential BAN specific sequences were obtained after SSH of the BAN genome, with a pool of closely related strain genomes and subsequent differential screening by dot blot hybridisation. Primers were designed for 30 sequences which showed no match with any sequence database entry, using BLAST and FASTA. Primer specificity was assessed by qPCR using 45 non-target strains and species in a stepwise approach. Primer T39_S2 was the only primer pair without any unspecific binding properties and it showed a PCR efficiency of 80% with a Cq value of 17.32 for 20 ng BAN DNA. Optimised feed-matrix dependent calibration curve for the quantification of BAN was generated, ranging from 6.28 × 10(3)cfu g(-1) to 1.61 × 10(6)cfu g(-1). Limit of detection of the qPCR assay was 2 × 10(1)cfu g(-1) BAN. Applicability of the strain-specific qPCR assay was confirmed in a spiking experiment which added BAN to the feed in two concentrations, 2 × 10(6)cfu g(-1) and 2 × 10(4)cfu g(-1). Results showed BAN mean recovery rates in feed of 1.44 × 10(6) ± 4.39 × 10(5)cfu g(-1) and 1.59 × 10(4) ± 1.69 × 10(4)cfu g(-1), respectively. The presented BAN-specific qPCR assay can be applied in animal feeding trials, in order to control the correct inclusion rates of the probiotic to the feed, and it could further be adapted, to monitor the uptake of the probiotic into the gastrointestinal tract of broiler chickens.


Assuntos
Ração Animal/microbiologia , Bifidobacterium animalis/isolamento & purificação , Probióticos/química , Reação em Cadeia da Polimerase em Tempo Real/métodos , Técnicas de Hibridização Subtrativa/métodos , Ração Animal/análise , Animais , Bifidobacterium animalis/genética , Bifidobacterium animalis/crescimento & desenvolvimento , Galinhas , Primers do DNA/genética , Especificidade da Espécie
2.
PLoS One ; 9(2): e90208, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24587284

RESUMO

A strain-specific real-time PCR assay was developed for quantification of a probiotic Lactobacillus reuteri (DSM 16350) in poultry feed and intestine. The specific primers were designed based on a genomic sequence of the strain derived from suppression subtractive hybridization with the type strain L. reuteri DSM 20016. Specificity was tested using a set of non-target strains from several sources. Applicability of the real-time PCR assay was evaluated in a controlled broiler feeding trial by using standard curves specific for feed and intestinal matrices. The amount of the probiotic L. reuteri was determined in feed from three feeding phases and in intestinal samples of the jejunum, ileum, and caecum of three, 14, and 39 day old birds. L. reuteri DSM 16350 cells were enumerated in all feeds supplemented with the probiotic close to the inclusion rate of 7.0 × 10(3) cfu/g, however, were not detected in L. reuteri DSM 16350 free feed. In three day old birds L. reuteri DSM 16350 was only detected in intestinal samples from probiotic fed animals ranging from 8.2 ± 7.8 × 10(5) cfu/g in the jejunum, 1.0 ± 1.1×10(7) cfu/g in the ileum, and 2.5 ± 5.7 × 10(5) cfu/g in the caecum. Similar results were obtained for intestinal samples of older birds (14 and 39 days). With increasing age of the animals the amount of L. reuteri signals in the control animals, however, also increased, indicating the appearance of highly similar bacterial genomes in the gut microbiota. The L. reuteri DSM 16350 qPCR assay could be used in future for feeding trials to assure the accurate inclusion of the supplement to the feed and to monitor it's uptake into the GIT of young chicken.


Assuntos
Ração Animal/microbiologia , Intestinos/microbiologia , Limosilactobacillus reuteri/genética , Probióticos , Animais , Galinhas , Limosilactobacillus reuteri/classificação , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...