Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Mol Metab ; 79: 101869, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38160938

RESUMO

OBJECTIVE: Lysosomal acid lipase (LAL) is the only enzyme known to hydrolyze cholesteryl esters (CE) and triacylglycerols in lysosomes at an acidic pH. Despite the importance of lysosomal hydrolysis in skeletal muscle (SM), research in this area is limited. We hypothesized that LAL may play an important role in SM development, function, and metabolism as a result of lipid and/or carbohydrate metabolism disruptions. RESULTS: Mice with systemic LAL deficiency (Lal-/-) had markedly lower SM mass, cross-sectional area, and Feret diameter despite unchanged proteolysis or protein synthesis markers in all SM examined. In addition, Lal-/- SM showed increased total cholesterol and CE concentrations, especially during fasting and maturation. Regardless of increased glucose uptake, expression of the slow oxidative fiber marker MYH7 was markedly increased in Lal-/-SM, indicating a fiber switch from glycolytic, fast-twitch fibers to oxidative, slow-twitch fibers. Proteomic analysis of the oxidative and glycolytic parts of the SM confirmed the transition between fast- and slow-twitch fibers, consistent with the decreased Lal-/- muscle size due to the "fiber paradox". Decreased oxidative capacity and ATP concentration were associated with reduced mitochondrial function of Lal-/- SM, particularly affecting oxidative phosphorylation, despite unchanged structure and number of mitochondria. Impairment in muscle function was reflected by increased exhaustion in the treadmill peak effort test in vivo. CONCLUSION: We conclude that whole-body loss of LAL is associated with a profound remodeling of the muscular phenotype, manifested by fiber type switch and a decline in muscle mass, most likely due to dysfunctional mitochondria and impaired energy metabolism, at least in mice.


Assuntos
Doenças Mitocondriais , Doença de Wolman , Animais , Camundongos , Músculo Esquelético/metabolismo , Proteômica , Esterol Esterase/metabolismo , Doença de Wolman/genética
2.
Biomedicines ; 11(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38137418

RESUMO

Very little is known about the association between individual serum free fatty acids (FFAs) and clinical and laboratory parameters (indicators of heart failure severity) in acute heart failure (AHF) patients. Here, the baseline serum levels of FFAs, 16:0 (palmitic acid), 16:1 (palmitoleic acid), 18:0 (stearic acid), 18:1 (oleic acid), 18:2 (linoleic acid), 18:3 (alpha-linolenic acid or gamma-linolenic acid), 20:4 (arachidonic acid), 20:5 (eicosapentaenoic acid), and 22:6 (docosahexaenoic acid), were determined in 304 AHF patients (94.7% belonged to New York Heart Association functional class IV) using gas chromatography. Spearman correlation coefficients were used to examine the associations between the individual and total (the sum of all FFAs) FFAs and clinical and laboratory parameters. After applying a Bonferroni correction to correct for multiple testing, the total FFAs, as well as the individual FFAs (except FFAs 18:0, 20:5, and 22:6), were found to be significantly positively correlated with serum albumin. Only a few additional associations were found: FFA 16:0 was significantly negatively correlated with systolic pulmonary artery pressure, FFA 18:3 was significantly negatively correlated with C-reactive protein and body mass index, and FFA 20:4 was significantly negatively correlated with blood urea nitrogen. Based on our results, we conclude that in patients with severe AHF, individual and total serum FFAs are slightly associated with established laboratory and clinical parameters, which are indicators of heart failure severity.

3.
Cells ; 11(7)2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35406635

RESUMO

Systemic inflammation induces alterations in the finely tuned micromilieu of the brain that is continuously monitored by microglia. In the CNS, these changes include increased synthesis of the bioactive lipid lysophosphatidic acid (LPA), a ligand for the six members of the LPA receptor family (LPA1-6). In mouse and human microglia, LPA5 belongs to a set of receptors that cooperatively detect danger signals in the brain. Engagement of LPA5 by LPA polarizes microglia toward a pro-inflammatory phenotype. Therefore, we studied the consequences of global LPA5 knockout (-/-) on neuroinflammatory parameters in a mouse endotoxemia model and in primary microglia exposed to LPA in vitro. A single endotoxin injection (5 mg/kg body weight) resulted in lower circulating concentrations of TNFα and IL-1ß and significantly reduced gene expression of IL-6 and CXCL2 in the brain of LPS-injected LPA5-/- mice. LPA5 deficiency improved sickness behavior and energy deficits produced by low-dose (1.4 mg LPS/kg body weight) chronic LPS treatment. LPA5-/- microglia secreted lower concentrations of pro-inflammatory cyto-/chemokines in response to LPA and showed higher maximal mitochondrial respiration under basal and LPA-activated conditions, further accompanied by lower lactate release, decreased NADPH and GSH synthesis, and inhibited NO production. Collectively, our data suggest that LPA5 promotes neuroinflammation by transmiting pro-inflammatory signals during endotoxemia through microglial activation induced by LPA.


Assuntos
Endotoxemia , Receptores de Ácidos Lisofosfatídicos , Animais , Peso Corporal , Modelos Animais de Doenças , Endotoxemia/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos , Lisofosfolipídeos , Camundongos , Camundongos Knockout , Microglia/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética
5.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34769194

RESUMO

Osteosarcoma (OS) is the most common type of bone tumor, and has limited therapy options. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) has striking anti-tumor effects in various tumors. Here, we investigated molecular mechanisms that mediate anti-tumor effects of 15d-PGJ2 in different OS cell lines. Human U2-OS and Saos-2 cells were treated with 15d-PGJ2 and cell survival was measured by MTT assay. Cell proliferation and motility were investigated by scratch assay, the tumorigenic capacity by colony forming assay. Intracellular ROS was estimated by H2DCFDA. Activation of MAPKs and cytoprotective proteins was detected by immunoblotting. Apoptosis was detected by immunoblotting and Annexin V/PI staining. The ex ovo CAM model was used to study growth capability of grafted 15d-PGJ2-treated OS cells, followed by immunohistochemistry with hematoxylin/eosin and Ki-67. 15d-PGJ2 substantially decreased cell viability, colony formation and wound closure capability of OS cells. Non-malignant human osteoblast was less affected by 15d-PGJ2. 15d-PGJ2 induced rapid intracellular ROS production and time-dependent activation of MAPKs (pERK1/2, pJNK and pp38). Tempol efficiently inhibited 15d-PGJ2-induced ERK1/2 activation, while N-acetylcystein and pyrrolidine dithiocarbamate were less effective. Early but weak activation of cytoprotective proteins was overrun by induction of apoptosis. A structural analogue, 9,10-dihydro-15d-PGJ2, did not show toxic effects in OS cells. In the CAM model, we grafted OS tumors with U2-OS, Saos-2 and MG-63 cells. 15d-PGJ2 treatment resulted in significant growth inhibition, diminished tumor tissue density, and reduced tumor cell proliferation for all cell lines. Our in vitro and CAM data suggest 15d-PGJ2 as a promising natural compound to interfere with OS tumor growth.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Prostaglandina D2/análogos & derivados , Animais , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Galinhas , Ativação Enzimática/efeitos dos fármacos , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Osteossarcoma/metabolismo , Prostaglandina D2/farmacologia , Espécies Reativas de Oxigênio/metabolismo
6.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34445223

RESUMO

Increasing evidence suggests that systemic inflammation triggers a neuroinflammatory response that involves sustained microglia activation. This response has deleterious consequences on memory and learning capability in experimental animal models and in patients. However, the mechanisms connecting systemic inflammation and microglia activation remain poorly understood. Here, we identify the autotaxin (ATX)/lysophosphatidic acid (LPA)/LPA-receptor axis as a potential pharmacological target to modulate the LPS-mediated neuroinflammatory response in vitro (the murine BV-2 microglia cell line) and in vivo (C57BL/6J mice receiving a single i.p. LPS injection). In LPS-stimulated (20 ng/mL) BV-2 cells, we observed increased phosphorylation of transcription factors (STAT1, p65, and c-Jun) that are known to induce a proinflammatory microglia phenotype. LPS upregulated ATX, TLR4, and COX2 expression, amplified NO production, increased neurotoxicity of microglia conditioned medium, and augmented cyto-/chemokine concentrations in the cellular supernatants. PF8380 (a type I ATX inhibitor, used at 10 and 1 µM) and AS2717638 (an LPA5 antagonist, used at 1 and 0.1 µM) attenuated these proinflammatory responses, at non-toxic concentrations, in BV-2 cells. In vivo, we demonstrate accumulation of PF8380 in the mouse brain and an accompanying decrease in LPA concentrations. In vivo, co-injection of LPS (5 mg/kg body weight) and PF8380 (30 mg/kg body weight), or LPS/AS2717638 (10 mg/kg body weight), significantly attenuated LPS-induced iNOS, TNFα, IL-1ß, IL-6, and CXCL2 mRNA expression in the mouse brain. On the protein level, PF8380 and AS2717638 significantly reduced TLR4, Iba1, GFAP and COX2 expression, as compared to LPS-only injected animals. In terms of the communication between systemic inflammation and neuroinflammation, both inhibitors significantly attenuated LPS-mediated systemic TNFα and IL-6 synthesis, while IL-1ß was only reduced by PF8380. Inhibition of ATX and LPA5 may thus provide an opportunity to protect the brain from the toxic effects that are provoked by systemic endotoxemia.


Assuntos
Benzoxazóis/farmacologia , Encéfalo/metabolismo , Endotoxemia , Isoquinolinas/farmacologia , Lipopolissacarídeos/toxicidade , Microglia/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Piperazinas/farmacologia , Piperidinas/farmacologia , Receptores de Ácidos Lisofosfatídicos , Animais , Encéfalo/patologia , Linhagem Celular , Modelos Animais de Doenças , Endotoxemia/induzido quimicamente , Endotoxemia/metabolismo , Endotoxemia/patologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Microglia/patologia , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/metabolismo
7.
Int J Mol Sci ; 22(4)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671212

RESUMO

Lysophosphatidic acid (LPA) species are a family of bioactive lipids that transmit signals via six cognate G protein-coupled receptors, which are required for brain development and function of the nervous system. LPA affects the function of all cell types in the brain and can display beneficial or detrimental effects on microglia function. During earlier studies we reported that LPA treatment of microglia induces polarization towards a neurotoxic phenotype. In the present study we investigated whether these alterations are accompanied by the induction of a specific immunometabolic phenotype in LPA-treated BV-2 microglia. In response to LPA (1 µM) we observed slightly decreased mitochondrial respiration, increased lactate secretion and reduced ATP/ADP ratios indicating a switch towards aerobic glycolysis. Pathway analyses demonstrated induction of the Akt-mTOR-Hif1α axis under normoxic conditions. LPA treatment resulted in dephosphorylation of AMP-activated kinase, de-repression of acetyl-CoA-carboxylase and increased fatty acid content in the phospholipid and triacylglycerol fraction of BV-2 microglia lipid extracts, indicating de novo lipogenesis. LPA led to increased intracellular amino acid content at one or more time points. Finally, we observed LPA-dependent generation of reactive oxygen species (ROS), phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2), upregulated protein expression of the Nrf2 target regulatory subunit of glutamate-cysteine ligase and increased glutathione synthesis. Our observations suggest that LPA, as a bioactive lipid, induces subtle alterations of the immunometabolic program in BV-2 microglia.


Assuntos
Aminoácidos/metabolismo , Glicólise/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Microglia/metabolismo , Nucleotídeos de Adenina/metabolismo , Aerobiose/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ácido Láctico/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos , Microglia/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Fator 2 Relacionado a NF-E2/metabolismo , Fosfocreatina/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
8.
Transl Res ; 232: 103-114, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33352296

RESUMO

Chronic hepatitis C virus infection is characterized by multiple extra-hepatic manifestations. Innate immune dysfunction and hemolysis are symptoms which might be associated with each other. We investigated the impact of direct acting antivirals on neutrophil function and its connection to hemolysis. In this prospective study, 85 patients with or without cirrhosis and 21 healthy controls were included. Patients' blood samples were taken at baseline, at the end of therapy and at follow-up 12 weeks after end of therapy. Neutrophil phagocytosis, oxidative burst, and hemolysis parameters were studied. Multivariate analysis was performed to decipher the relationship between hemolysis and neutrophil function. Ex vivo cross-incubation experiments with neutrophils and serum fractions were done. Impaired neutrophil phagocytosis and mild hemolysis were observed in patients with and without cirrhosis. A proteome approach revealed different expression of hemolysis-related serum proteins in patients and controls. Direct acting antiviral therapy restored neutrophil function irrespective of severity of liver disease, achievement of sustained virologic response or type of drug and reduced hemolysis. Treatment with ribavirin delayed the improvement of neutrophil function. Statistical analysis revealed associations of haptoglobin with neutrophil phagocytic capacity. Neutrophil dysfunction could be transferred to healthy cells by incubation with patients' serum fractions (>30 kDa) ex vivo. Neutrophil dysfunction and hemolysis represent extrahepatic manifestations of chronic hepatitis C virus infection and simultaneously improve during direct acting antiviral therapy independently of therapy-related liver function recovery. Therefore, large-scale treatment would not only drive viral eradication but also improve patients' immune system and may reduce susceptibility to infections.


Assuntos
Antivirais/uso terapêutico , Hemólise/efeitos dos fármacos , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/imunologia , Neutrófilos/imunologia , Ribavirina/uso terapêutico , Idoso , Feminino , Hepatite C Crônica/sangue , Humanos , Fígado/fisiopatologia , Masculino , Pessoa de Meia-Idade , Neutrófilos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Estudos Prospectivos
9.
Innate Immun ; 27(1): 3-14, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33243051

RESUMO

Our aim was to analyze whether endotoxemia, i.e. translocation of LPS to circulation, is reflected in the serum metabolic profile in a general population and in participants with cardiometabolic disorders. We investigated three Finnish cohorts separately and in a meta-analysis (n = 7178), namely population-based FINRISK97, FinnTwin16 consisting of young adult twins, and Parogene, a random cohort of cardiac patients. Endotoxemia was determined as serum LPS activity and metabolome by an NMR platform. Potential effects of body mass index (BMI), smoking, metabolic syndrome (MetS), and coronary heart disease (CHD) status were considered. Endotoxemia was directly associated with concentrations of VLDL, IDL, LDL, and small HDL lipoproteins, VLDL particle diameter, total fatty acids (FA), glycoprotein acetyls (GlycA), aromatic and branched-chain amino acids, and Glc, and inversely associated with concentration of large HDL, diameters of LDL and HDL, as well as unsaturation degree of FAs. Some of these disadvantageous associations were significantly stronger in smokers and subjects with high BMI, but did not differ between participants with different CHD status. In participants with MetS, however, the associations of endotoxemia with FA parameters and GlycA were particularly strong. The metabolic profile in endotoxemia appears highly adverse, involving several inflammatory characters and risk factors for cardiometabolic disorders.


Assuntos
Endotoxemia/metabolismo , Metaboloma , Metabolômica , Adolescente , Adulto , Idoso , Índice de Massa Corporal , Estudos de Coortes , Doença das Coronárias/metabolismo , Endotoxemia/epidemiologia , Feminino , Finlândia/epidemiologia , Cardiopatias/metabolismo , Humanos , Metabolismo dos Lipídeos , Lipídeos/sangue , Lipopolissacarídeos/metabolismo , Estudos Longitudinais , Espectroscopia de Ressonância Magnética , Masculino , Síndrome Metabólica/metabolismo , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , Fumar/efeitos adversos , Adulto Jovem
10.
Int J Mol Sci ; 21(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287422

RESUMO

Sepsis is a major cause of mortality in critically ill patients and associated with cardiac dysfunction, a complication linked to immunological and metabolic aberrations. Cardiac neutrophil infiltration and subsequent release of myeloperoxidase (MPO) leads to the formation of the oxidant hypochlorous acid (HOCl) that is able to chemically modify plasmalogens (ether-phospholipids) abundantly present in the heart. This reaction gives rise to the formation of reactive lipid species including aldehydes and chlorinated fatty acids. During the present study, we tested whether endotoxemia increases MPO-dependent lipid oxidation/modification in the mouse heart. In hearts of lipopolysaccharide-injected mice, we observed significantly higher infiltration of MPO-positive cells, increased fatty acid content, and formation of 2-chlorohexadecanal (2-ClHDA), an MPO-derived plasmalogen modification product. Using murine HL-1 cardiomyocytes as in vitro model, we show that exogenously added HOCl attacks the cellular plasmalogen pool and gives rise to the formation of 2-ClHDA. Addition of 2-ClHDA to HL-1 cardiomyocytes resulted in conversion to 2-chlorohexadecanoic acid and 2-chlorohexadecanol, indicating fatty aldehyde dehydrogenase-mediated redox metabolism. However, a recovery of only 40% indicated the formation of non-extractable (protein) adducts. To identify protein targets, we used a clickable alkynyl analog, 2-chlorohexadec-15-yn-1-al (2-ClHDyA). After Huisgen 1,3-dipolar cycloaddition of 5-tetramethylrhodamine azide (N3-TAMRA) and two dimensional-gel electrophoresis (2D-GE), we were able to identify 51 proteins that form adducts with 2-ClHDyA. Gene ontology enrichment analyses revealed an overrepresentation of heat shock and chaperone, energy metabolism, and cytoskeletal proteins as major targets. Our observations in a murine endotoxemia model demonstrate formation of HOCl-modified lipids in the heart, while pathway analysis in vitro revealed that the chlorinated aldehyde targets specific protein subsets, which are central to cardiac function.


Assuntos
Aldeídos/metabolismo , Endotoxemia/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Peroxidase/metabolismo , Animais , Biomarcadores , Química Click , Endotoxemia/etiologia , Ácidos Graxos/metabolismo , Ácido Hipocloroso/metabolismo , Lipopolissacarídeos/administração & dosagem , Camundongos , Proteoma , Proteômica/métodos , Espécies Reativas de Oxigênio/metabolismo
11.
Water Res ; 187: 116384, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32980605

RESUMO

Reliable data on the economic feasibility of small-scale rural water supply systems are insufficient, which hampers the allocation of funds to construct them, even as the need for their construction increases. To address this gap, three newly constructed water supply systems with water points in Nepal, Egypt, and Tanzania were accompanied by the authors throughout the planning and implementation phases and up to several years of operation. This study presents an analysis of their economic feasibility and suggests important factors for successful water supply system implementation at other rural locations. The initial investment for construction of the new water supply systems ranged from 23,600 € to 44,000 €, and operation and maintenance costs ranged from 547 € to 1921 € per year. The water price and actual multi-year average quantity of tapped water at each site were 7.7 €/m³ & 0.67 m³/d in Nepal, 0.7 €/m³ & 0.88 m³/d in Egypt and 0.9 €/m³ & 8.65 m³/d in Tanzania. Although the new water supply systems enjoyed acceptance among the consumers, the actual average water quantity tapped ranged from just 17 to 30 % of the demand for which the new supply systems were designed. While two of three sites successfully yielded a cash surplus through the sale of water, sufficient for operation, maintenance and basic repairs, no site showed a realistic chance of recovering the initial investment (reaching the break-even point) within the projected lifetime of the technical infrastructure. Reaching the break-even point within 5 years, which would be necessary to attract private investors, would require an unrealistic increase of the water price or the water consumption by factors ranging from 5.2 to 9.0. The economic viability of such systems therefore depends strongly on the quantity of water consumed and the water price, as well as the availability of funding from governments, NGOs or other sponsors not primarily interested in a financial return on their investment.


Assuntos
Halogenação , Água , Análise Custo-Benefício , Egito , Humanos , Nepal , Tanzânia , Abastecimento de Água
12.
J Neuroinflammation ; 17(1): 127, 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32326963

RESUMO

BACKGROUND: In the extracellular environment, lysophosphatidic acid (LPA) species are generated via autotaxin (ATX)-mediated hydrolysis of lysophospholipid precursors. Members of the LPA family are potent lipid mediators transmitting signals via six different G protein-coupled LPA receptors (LPAR1-6). The LPA signaling axis is indispensable for brain development and function of the nervous system; however, during damage of the central nervous system, LPA levels can increase and aberrant signaling events counteract brain function. Here, we investigated regulation of the ATX/LPA/LPAR axis in response to lipopolysaccharide-induced systemic inflammation in mice and potential neurotoxic polarization programs in LPA-activated primary murine microglia. METHODS: In vivo, LPAR1-6 expression was established by qPCR in whole murine brain homogenates and in FACS-sorted microglia. ELISAs were used to quantitate LPA concentrations in the brain and cyto-/chemokine secretion from primary microglia in vitro. Transcription factor phosphorylation was analyzed by immunoblotting, and plasma membrane markers were analyzed by flow cytometry. We used MAPK inhibitors to study signal integration by the JNK, p38, and ERK1/2 branches in response to LPA-mediated activation of primary microglia. RESULTS: Under acute and chronic inflammatory conditions, we observed a significant increase in LPA concentrations and differential regulation of LPAR, ATX (encoded by ENPP2), and cytosolic phospholipase A2 (encoded by PLA2G4A) gene expression in the brain and FACS-sorted microglia. During pathway analyses in vitro, the use of specific MAPK antagonists (SP600125, SB203580, and PD98059) revealed that JNK and p38 inhibition most efficiently attenuated LPA-induced phosphorylation of proinflammatory transcription factors (STAT1 and -3, p65, and c-Jun) and secretion of IL-6 and TNFα. All three inhibitors decreased LPA-mediated secretion of IL-1ß, CXCL10, CXCL2, and CCL5. The plasma membrane marker CD40 was solely inhibited by SP600125 while all three inhibitors affected expression of CD86 and CD206. All MAPK antagonists reduced intracellular COX-2 and Arg1 as well as ROS and NO formation, and neurotoxicity of microglia-conditioned media. CONCLUSION: In the present study, we show that systemic inflammation induces aberrant ATX/LPA/LPAR homeostasis in the murine brain. LPA-mediated polarization of primary microglia via MAPK-dependent pathways induces features reminiscent of a neurotoxic phenotype.


Assuntos
Inflamação/metabolismo , Lisofosfolipídeos/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Microglia/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Diester Fosfórico Hidrolases/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo
13.
Int J Mol Sci ; 21(3)2020 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-32050431

RESUMO

During inflammation, activated leukocytes release cytotoxic mediators that compromise blood-brain barrier (BBB) function. Under inflammatory conditions, myeloperoxidase (MPO) is critically involved in inflicting BBB damage. We used genetic and pharmacological approaches to investigate whether MPO induces aberrant lipid homeostasis at the BBB in a murine endotoxemia model. To corroborate findings in a human system we studied the impact of sera from sepsis and non-sepsis patients on brain endothelial cells (hCMEC/D3). In response to endotoxin, the fatty acid, ceramide, and sphingomyelin content of isolated mouse brain capillaries dropped and barrier dysfunction occurred. In mice, genetic deficiency or pharmacological inhibition of MPO abolished these alterations. Studies in metabolic cages revealed increased physical activity and less pronounced sickness behavior of MPO-/- compared to wild-type mice in response to sepsis. In hCMEC/D3 cells, exogenous tumor necrosis factor α (TNFα) potently regulated gene expression of pro-inflammatory cytokines and a set of genes involved in sphingolipid (SL) homeostasis. Notably, treatment of hCMEC/D3 cells with sera from septic patients reduced cellular ceramide concentrations and induced barrier and mitochondrial dysfunction. In summary, our in vivo and in vitro data revealed that inflammatory mediators including MPO, TNFα induce dysfunctional SL homeostasis in brain endothelial cells. Genetic and pharmacological inhibition of MPO attenuated endotoxin-induced alterations in SL homeostasis in vivo, highlighting the potential role of MPO as drug target to treat inflammation-induced brain dysfunction.


Assuntos
Encéfalo/irrigação sanguínea , Células Endoteliais/metabolismo , Peroxidase/metabolismo , Sepse/metabolismo , Esfingolipídeos/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Capilares/metabolismo , Capilares/patologia , Linhagem Celular , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/patologia , Homeostase , Humanos , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Sepse/patologia
14.
Clin Res Cardiol ; 109(3): 358-373, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31263995

RESUMO

BACKGROUND: The present study aimed to evaluate biomarkers representing low-grade systemic inflammation and their association with cardiovascular mortality in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. METHODS: The included 3134 consecutive patients underwent coronary angiography between June 1997 and May 2001 with a median follow-up of 9.9 years. Plasma levels of IL-6, and acute-phase reactants serum amyloid A (SAA) and C-reactive protein (CRP) were measured. SAA and IL-6 polymorphisms were genotyped. RESULTS: During a median observation time of 9.9 years, 949 deaths (30.3%) occurred, of these 597 (19.2%) died from cardiovascular causes. High plasma levels of IL-6, CRP and SAA were associated with unstable CAD, as well as established risk factors including type 2 diabetes mellitus, smoking, low glomerular filtration rate, low TGs and low HDL-C. After adjusting for established cardiovascular risk markers and the other two inflammatory markers, SAA was found to be an independent risk factor for cardiovascular mortality after a short-term follow-up (6 months-1 year) with a HR per SD of 1.41. IL-6 was identified as an independent risk factor for long-term follow-up (3, 5, and 9.9 years) with HRs per SD of 1.21, 1.22 and 1.18. CRP lost significance after adjustment. Although 6 out of 27 SAA SNPs were significantly associated with SAA plasma concentrations, the genetic risk score was not associated with cardiovascular mortality. CONCLUSIONS: The present findings from the large, prospective LURIC cohort underline the importance of inflammation in CAD and the prognostic relevance of inflammatory biomarkers that independently predict cardiovascular mortality.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Inflamação/fisiopatologia , Proteína Amiloide A Sérica/metabolismo , Idoso , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , Doenças Cardiovasculares/diagnóstico por imagem , Doenças Cardiovasculares/mortalidade , Estudos de Coortes , Angiografia Coronária , Feminino , Seguimentos , Humanos , Interleucina-6/sangue , Interleucina-6/genética , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Prognóstico , Estudos Prospectivos , Fatores de Risco , Proteína Amiloide A Sérica/genética , Fatores de Tempo
15.
Front Cell Neurosci ; 13: 531, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849616

RESUMO

Lysophosphatidic acid (LPA) species in the extracellular environment induce downstream signaling via six different G protein-coupled receptors (LPAR1-6). These signaling cascades are essential for normal brain development and function of the nervous system. However, in response to acute or chronic central nervous system (CNS) damage, LPA levels increase and aberrant signaling events can counteract brain function. Under neuro-inflammatory conditions signaling along the LPA/LPAR5 axis induces a potentially neurotoxic microglia phenotype indicating the need for new pharmacological intervention strategies. Therefore, we compared the effects of two novel small-molecule LPAR5 antagonists on LPA-induced polarization parameters of the BV-2 microglia cell line. AS2717638 is a selective piperidine-based LPAR5 antagonist (IC50 0.038 µM) while compound 3 is a diphenylpyrazole derivative with an IC50 concentration of 0.7 µM in BV-2 cells. Both antagonists compromised cell viability, however, at concentrations above their IC50 concentrations. Both inhibitors blunted LPA-induced phosphorylation of STAT1 and STAT3, p65, and c-Jun and consequently reduced the secretion of pro-inflammatory cyto-/chemokines (IL-6, TNFα, IL-1ß, CXCL10, CXCL2, and CCL5) at non-toxic concentrations. Both compounds modulated the expression of intracellular (COX-2 and Arg1) and plasma membrane-located (CD40, CD86, and CD206) polarization markers yet only AS2717638 attenuated the neurotoxic potential of LPA-activated BV-2 cell-conditioned medium towards CATH.a neurons. Our findings from the present in vitro study suggest that the two LPAR5 antagonists represent valuable pharmacological tools to interfere with LPA-induced pro-inflammatory signaling cascades in microglia.

16.
Nat Commun ; 10(1): 3732, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427612

RESUMO

Recently identified core proteins (MICU1, MCU, EMRE) forming the mitochondrial Ca2+ uniporter complex propelled investigations into its physiological workings. Here, we apply structured illumination microscopy to visualize and localize these proteins in living cells. Our data show that MICU1 localizes at the inner boundary membrane (IBM) due to electrostatic interaction of its polybasic domain. Moreover, this exclusive localization of MICU1 is important for the stability of cristae junctions (CJ), cytochrome c release and mitochondrial membrane potential. In contrast to MICU1, MCU and EMRE are homogeneously distributed at the inner mitochondrial membrane under resting conditions. However, upon Ca2+ elevation MCU and EMRE dynamically accumulate at the IBM in a MICU1-dependent manner. Eventually, our findings unveil an essential function of MICU1 in CJ stabilization and provide mechanistic insights of how sophistically MICU1 controls the MCU-Complex while maintaining the structural mitochondrial membrane framework.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Sinalização do Cálcio/fisiologia , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Membranas Mitocondriais/metabolismo
17.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(4): 500-511, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30639734

RESUMO

Lysosomal acid lipase (LAL) hydrolyzes cholesteryl esters (CE) and triglycerides (TG) to generate fatty acids (FA) and cholesterol. LAL deficiency (LAL-D) in both humans and mice leads to hepatomegaly, hypercholesterolemia, and shortened life span. Despite its essential role in lysosomal neutral lipid catabolism, the cell type-specific contribution of LAL to disease progression is still elusive. To investigate the role of LAL in the liver in more detail and to exclude the contribution of LAL in macrophages, we generated hepatocyte-specific LAL-deficient mice (Liv-Lipa-/-) and fed them either chow or high fat/high cholesterol diets (HF/HCD). Comparable to systemic LAL-D, Liv-Lipa-/- mice were resistant to diet-induced obesity independent of food intake, movement, and energy expenditure. Reduced body weight gain was mainly due to reduced white adipose tissue depots. Furthermore, Liv-Lipa-/- mice exhibited improved glucose clearance during glucose and insulin tolerance tests compared to control mice. Analysis of hepatic lipid content revealed a massive reduction of TG, whereas CE concentrations were markedly increased, leading to CE crystal formation in the livers of Liv-Lipa-/- mice. Elevated plasma transaminase activities, increased pro-inflammatory cytokines and chemokines as well as hepatic macrophage infiltration indicated liver inflammation. Our data provide evidence that hepatocyte-specific LAL deficiency is sufficient to alter whole-body lipid and energy homeostasis in mice. We conclude that hepatic LAL plays a pivotal role by preventing liver damage and maintaining lipid and energy homeostasis, especially during high lipid availability.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Hepatite/genética , Hepatócitos/enzimologia , Obesidade/prevenção & controle , Esterol Esterase/deficiência , Animais , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Hepatócitos/imunologia , Homeostase , Metabolismo dos Lipídeos , Masculino , Camundongos , Obesidade/induzido quimicamente , Obesidade/genética , Esterol Esterase/genética , Esterol Esterase/metabolismo
18.
J Invest Dermatol ; 139(4): 807-817, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30399362

RESUMO

The majority of Merkel cell carcinoma, a highly aggressive neuroendocrine cancer of the skin, is associated with Merkel cell polyomavirus infection. Polyomavirus binding, internalization, and infection are mediated by glycosphingolipids. Besides receptor function, bioactive sphingolipids are increasingly recognized as potent regulators of several hallmarks of cancer. Merkel cell polyomavirus+ and Merkel cell polyomavirus- cells express serine palmitoyl transferase subunits and sphingosine kinase (SK) 1/2 mRNA. Induced expression of Merkel cell polyomavirus-large tumor antigen in human lung fibroblasts resulted in upregulation of SPTLC1-3 and SK 1/2 expression. Therefore, we exploited pharmacological inhibition of sphingolipid metabolism as an option to interfere with proliferation of Merkel cell polyomavirus+ Merkel cell carcinoma cell lines. We used myriocin (a serine palmitoyl transferase antagonist) and two SK inhibitors (SKI-II and ABC294640). In MKL-1 and WaGa cells myriocin decreased cellular ceramide, sphingomyelin, and sphingosine-1-phosphate content. SKI-II increased ceramide species but decreased sphingomyelin and sphingosine-1-phosphate concentrations. Aberrant sphingolipid homeostasis was associated with reduced cell viability, increased necrosis, procaspase-3 and PARP processing, caspase-3 activity, and decreased AKTS473 phosphorylation. Myriocin and SKI-II decreased tumor size and Ki-67 staining of xenografted MKL-1 and WaGa tumors on the chorioallantoic membrane. Our data suggest that pharmacological inhibition of sphingolipid synthesis could represent a potential therapeutic approach in Merkel cell carcinoma.


Assuntos
Carcinoma de Célula de Merkel/tratamento farmacológico , Ácidos Graxos Monoinsaturados/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Infecções por Polyomavirus/tratamento farmacológico , Serina C-Palmitoiltransferase/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Infecções Tumorais por Vírus/tratamento farmacológico , Carcinoma de Célula de Merkel/metabolismo , Carcinoma de Célula de Merkel/patologia , Contagem de Células , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunossupressores/farmacologia , Poliomavírus das Células de Merkel/imunologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Infecções por Polyomavirus/metabolismo , Infecções por Polyomavirus/patologia , RNA Neoplásico/genética , Serina C-Palmitoiltransferase/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Infecções Tumorais por Vírus/metabolismo , Infecções Tumorais por Vírus/patologia
19.
Front Physiol ; 9: 1622, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30487758

RESUMO

Some oral anti-hyperglycemic drugs, including gliptins that inhibit dipeptidyl peptidase 4 (DPP4), have been linked to the increased risk of heart failure (HF) in type-2 diabetic patients. While the cardiovascular safety trial, TECOS, revealed no link between sitagliptin and the risk of HF, a substantial 27% increase in the hospitalization for HF was observed in type-2 diabetic patients treated with saxagliptin within the SAVOR-TIMI 53 trial. A previous in vitro study revealed that saxagliptin impairs the Ca2+/calmodulin-dependent protein kinase II (CaMKII)-phospholamban (PLB)-sarcoplasmic reticulum Ca2+-ATPase 2a axis and protein kinase C (PKC) activity in cardiomyocytes leading to impaired cardiac contractility and electrophysiological function. However, the link between saxagliptin and its target proteins (CaMKII and PKC) remains to be explored. Since DPP8 and DPP9 (but not DPP4) are expressed by cardiomyocytes and saxagliptin is internalized by cardiomyocytes, we investigated whether DPP8/9 contribute to saxagliptin-mediated inhibition of CaMKII and PKC activity. Structural analysis revealed that the DPP4-saxagliptin interaction motif (S630, Y547) for the cyanopyrrolidine group is conserved in DPP8 (S755, Y669) and DPP9 (S730, Y644). Conversely, F357 that facilitates binding of the anchor lock domain of sitagliptin in the S2 extensive subsite of DPP4 is not conserved in DPP8/9. In parallel, unlike saxagliptin, sitagliptin did not affect phosphorylation of CaMKII/PLB or activity of PKC in HL-1 cardiomyocytes. These findings were recapitulated by pharmacological inhibition (TC-E-5007, a DPP8/9 antagonist) and knock-down of DPP9 (but not DPP8). In primary mouse ventricular cardiomyocytes, saxagliptin (but not sitagliptin) impaired Ca2+ transient relaxation and prolonged action potential duration (APD). These results suggest that saxagliptin-DPP9 interaction impairs the CaMKII-PLB and PKC signaling in cardiomyocytes. We reveal a novel and potential role of DPP9 in cardiac signaling. The interaction of saxagliptin with DPP9 may represent an underlying mechanism for the link between saxagliptin and HF. Elucidation of saxagliptin-DPP9 interaction and downstream events may foster a better understanding of the role of gliptins as modulators of cardiac signaling.

20.
Eur J Cancer ; 101: 165-180, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30077122

RESUMO

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide. Dysregulation of protein synthesis plays a major role in carcinogenesis, a process regulated at multiple levels, including translation of mRNA into proteins. Ribosome assembly requires correct association of ribosome subunits, which is ensured by eukaryotic translation initiation factors (eIFs). eIFs have become targets in cancer therapy studies, and promising data on eIF6 in various cancer entities have been reported. Therefore, we hypothesised that eIF6 represents a crossroad for pulmonary carcinogenesis. High levels of eIF6 are associated with shorter patient overall survival in adenocarcinoma (ADC), but not in squamous cell carcinoma (SQC) of the lung. We demonstrate significantly higher protein expression of eIF6 in ADC and SQC than in healthy lung tissue based on immunohistochemical data from tissue microarrays (TMAs) and on fresh frozen lung tissue. Depletion of eIF6 in ADC and SQC lung cancer cell lines inhibited cell proliferation and induced apoptosis. Knockdown of eIF6 led to pre-rRNA processing and ribosomal 60S maturation defects. Our data indicate that eIF6 is upregulated in NSCLC, suggesting an important contribution of eIF6 to the development and progression of NSCLC and a potential for new treatment strategies against NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fatores de Iniciação em Eucariotos/biossíntese , Neoplasias Pulmonares/metabolismo , Células A549 , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Idoso , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Progressão da Doença , Fatores de Iniciação em Eucariotos/genética , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...