Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
J Ethnopharmacol ; 331: 118261, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38685363

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Despite various treatment modalities, the progression and metastasis of breast cancer (BC) are grave concerns due to the alarming disease-free survival rate (DFS) and overall survival rate (OS) of affected patients. Over the years, many antibiotics, synthetic compounds, medicinal plant isolates and polyherbal combinations have been used as adjuvants in therapy for the management of primary and secondary tumors. Paclitaxel (PTX)-based chemotherapy for breast cancer causes multiple adverse side effects in patients. Withania somnifera (L.) Dunal (WS) and Asparagus racemosus Willd. (AR) as Ayurveda-inspired plant-based adjuvants were investigated for their anticancer effects on MDA-MB-231 and 4T1 cells in mouse model systems. AIM OF THE STUDY: This study focused on evaluating the adjuvant properties of WS and AR plant extracts with PTX and their effectiveness over PTX alone in terms of tumor inhibition. MATERIALS AND METHODS: The effects of WS and AR on DNA double-strand breaks (DSBs), senescence induction and mitochondrial functions were evaluated in BC cells in vitro. The potential for cancer stem cell (CSC) inhibition was evaluated via mammosphere formation assays and CD44/CD24 immunostaining. In vivo tumor growth studies were conducted in athymic BALB/c mice for MDA-MB-231 cells and in BALB/c mice for 4T1 cells. RESULTS: Induction of senescence was evident due to DSBs induced by the WS and AR extracts. Mammosphere formation and CD44/CD24 CSC markers were reduced after treatment with WS, AR or the combination of both in MCF-7 cells. WS or AR inhibited epithelial-to-mesenchymal transition (EMT). In vivo studies demonstrated that tumor growth inhibition was more pronounced in the treated group than in the PTX alone group and the untreated control group. CONCLUSION: Our study showed that the use of WS or AR plant hydroalcoholic extracts in combination with paclitaxel (PTX) has better effects on sensitivity and efficacy than PTX alone, as demonstrated in in vitro BC cells and mouse models with BC cell grafts. Hence, scheduling adjuvant therapy with WS or AR alone or combined with PTX can be advantageous for the management of triple-negative BC (TNBC). Further studies are warranted in human clinical conditions to ascertain the efficacy of these treatments.


Assuntos
Asparagus , Neoplasias da Mama , Camundongos Endogâmicos BALB C , Paclitaxel , Extratos Vegetais , Withania , Animais , Asparagus/química , Humanos , Withania/química , Feminino , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Camundongos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Antineoplásicos Fitogênicos/isolamento & purificação , Antígeno CD24/metabolismo , Receptores de Hialuronatos/metabolismo , Adjuvantes Farmacêuticos/farmacologia , Senescência Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos
2.
Daru ; 32(1): 263-278, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38683491

RESUMO

BACKGROUND: Aberrant expression of histone deacetylases (HDACs) and ribonucleotide reductase (RR) enzymes are commonly observed in various cancers. Researchers are focusing on these enzymes in cancer studies with the aim of developing effective chemotherapeutic drugs for cancer treatment. Targeting both HDAC and RR simultaneously with a dual HDAC/RR inhibitor has exhibited enhanced effectiveness compared to monotherapy in cancer treatment, making it a promising strategy. OBJECTIVES: The objective of the study is to synthesize and assess the anti-cancer properties of a 1,10-phenanthroline-based hydroxamate derivative, characterizing it as a novel dual HDAC/RR inhibitor. METHODS: The N1-hydroxy-N8-(1,10-phenanthrolin-5-yl)octanediamide (PA), a 1,10-phenanthroline-based hydroxamate derivative, was synthesized and structurally characterized. The compound was subjected to in vitro assessments of its anti-cancer, HDAC, and RR inhibitory activities. In silico docking and molecular dynamics simulations were further studied to explore its interactions with HDACs and RRM2. RESULTS: The structurally confirmed PA exhibited antiproliferative activity in SiHa cells with an IC50 of 16.43 µM. It displayed potent inhibitory activity against HDAC and RR with IC50 values of 10.80 µM and 9.34 µM, respectively. Co-inhibition of HDAC and RR resulted in apoptosis-induced cell death in SiHa cells, mediated by the accumulation of reactive oxygen species (ROS). In silico docking studies demonstrated that PA can effectively bind to the active sites of HDAC isoforms and RRM2. Furthermore, PA demonstrated a more favorable interaction with HDAC7, displaying a docking score of -9.633 kcal/mol, as compared to the standard HDAC inhibitor suberoylanilide hydroxamic acid (SAHA), which exhibited a docking score of -8.244 kcal/mol against HDAC7. CONCLUSION: The present study emphasizes the prospect of designing a potential 1,10-phenanthroline hydroxamic acid derivative as a novel dual HDAC and RR-inhibiting anti-cancer molecule.


Assuntos
Antineoplásicos , Proliferação de Células , Inibidores de Histona Desacetilases , Ácidos Hidroxâmicos , Simulação de Acoplamento Molecular , Fenantrolinas , Humanos , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Fenantrolinas/química , Fenantrolinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Simulação de Dinâmica Molecular , Histona Desacetilases/metabolismo , Histona Desacetilases/química , Ribonucleotídeo Redutases/antagonistas & inibidores , Ribonucleotídeo Redutases/química , Apoptose/efeitos dos fármacos
3.
Mol Biol Rep ; 51(1): 555, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642192

RESUMO

The eradication of Plasmodium parasites, responsible for malaria, is a daunting global public health task. It requires a comprehensive approach that addresses symptomatic, asymptomatic, and submicroscopic cases. Overcoming this challenge relies on harnessing the power of molecular diagnostic tools, as traditional methods like microscopy and rapid diagnostic tests fall short in detecting low parasitaemia, contributing to the persistence of malaria transmission. By precisely identifying patients of all types and effectively characterizing malaria parasites, molecular tools may emerge as indispensable allies in the pursuit of malaria elimination. Furthermore, molecular tools can also provide valuable insights into parasite diversity, drug resistance patterns, and transmission dynamics, aiding in the implementation of targeted interventions and surveillance strategies. In this review, we explore the significance of molecular tools in the pursuit of malaria elimination, shedding light on their key contributions and potential impact on public health.


Assuntos
Malária , Parasitos , Plasmodium , Animais , Humanos , Malária/epidemiologia , Malária/prevenção & controle , Saúde Pública , Microscopia/métodos
4.
Eur J Med Chem ; 269: 116324, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38520762

RESUMO

The development of cancer is influenced by several variables, including altered protein expression, and signaling pathways. Cancers are inherently heterogeneous and exhibit genetic and epigenetic aberrations; therefore, developing therapies that act on numerous biological targets is encouraged. To achieve this, two approaches are employed: combination therapy and dual/multiple targeting chemotherapeutics. Two enzymes, histone deacetylases (HDACs) and ribonucleotide reductase (RR), are crucial for several biological functions, including replication and repair of DNA, division of cells, transcription of genes, etc. However, it has been noted that different cancers exhibit abnormal functions of these enzymes. Potent inhibitors for each of these proteins have been extensively researched. Many medications based on these inhibitors have been successfully food and drug administration (FDA) approved, and the majority are undergoing various stages of clinical testing. This review discusses various studies of HDAC and RR inhibitors in combination therapy and dual-targeting chemotherapeutics.


Assuntos
Neoplasias , Ribonucleotídeo Redutases , Humanos , Ribonucleotídeo Redutases/uso terapêutico , Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias/genética
5.
Mitochondrion ; 76: 101853, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38423268

RESUMO

Mitochondria are an indispensable part of the cell that plays a crucial role in regulating various signaling pathways, energy metabolism, cell differentiation, proliferation, and cell death. Since mitochondria have their own genetic material, they differ from their nuclear counterparts, and dysregulation is responsible for a broad spectrum of diseases. Mitochondrial dysfunction is associated with several disorders, including neuro-muscular disorders, cancer, and premature aging, among others. The intricacy of the field is due to the cross-talk between nuclear and mitochondrial genes, which has also improved our knowledge of mitochondrial functions and their pathogenesis. Therefore, interdisciplinary research and communication are crucial for mitochondrial biology and medicine due to the challenges they pose for diagnosis and treatment. The ninth annual conference of the Society for Mitochondria Research and Medicine (SMRM)- India, titled "Mitochondria in Biology and Medicine" was organized at the Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India, on June 21-23, 2023. The latest advancements in the field of mitochondrial biology and medicine were discussed at the conference. In this article, we summarize the entire event for the benefit of researchers working in the field of mitochondrial biology and medicine.


Assuntos
Mitocôndrias , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Animais , Índia
6.
J Ovarian Res ; 17(1): 15, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216951

RESUMO

BACKGROUND: Ovarian cancer (OVCA) is the most lethal gynecologic cancer and chemoresistance remains a major hurdle to successful therapy and survival of OVCA patients. Plasma gelsolin (pGSN) is highly expressed in chemoresistant OVCA compared with their chemosensitive counterparts, although the mechanism underlying the differential expression is not known. Also, its overexpression significantly correlates with shortened survival of OVCA patients. In this study, we investigated the methylation role of Ten eleven translocation isoform-1 (TET1) in the regulation of differential pGSN expression and chemosensitivity in OVCA cells. METHODS: Chemosensitive and resistant OVCA cell lines of different histological subtypes were used in this study to measure pGSN and TET1 mRNA abundance (qPCR) as well as protein contents (Western blotting). To investigate the role of DNA methylation specifically in pGSN regulation and pGSN-induced chemoresistance, DNMTs and TETs were pharmacologically inhibited in sensitive and resistant OVCA cells using specific inhibitors. DNA methylation was quantified using EpiTYPER MassARRAY system. Gain-and-loss-of-function assays were used to investigate the relationship between TET1 and pGSN in OVCA chemoresponsiveness. RESULTS: We observed differential protein and mRNA expressions of pGSN and TET1 between sensitive and resistant OVCA cells and cisplatin reduced their expression in sensitive but not in resistant cells. We observed hypomethylation at pGSN promoter upstream region in resistant cells compared to sensitive cells. Pharmacological inhibition of DNMTs increased pGSN protein levels in sensitive OVCA cells and decreased their responsiveness to cisplatin, however we did not observe any difference in methylation level at pGSN promoter region. TETs inhibition resulted in hypermethylation at multiple CpG sites and decreased pGSN protein level in resistant OVCA cells which was also associated with enhanced response to cisplatin, findings that suggested the methylation role of TETs in the regulation of pGSN expression in OVCA cells. Further, we found that TET1 is inversely related to pGSN but positively related to chemoresponsiveness of OVCA cells. CONCLUSION: Our findings broaden our knowledge about the epigenetic regulation of pGSN in OVCA chemoresistance and reveal a novel potential target to re-sensitize resistant OVCA cells. This may provide a future therapeutic strategy to improve the overall OVCA patient survival.


Assuntos
Cisplatino , Neoplasias Ovarianas , Humanos , Feminino , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Gelsolina/genética , Gelsolina/metabolismo , Metilação de DNA , Epigênese Genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , RNA Mensageiro/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/uso terapêutico , Proteínas Proto-Oncogênicas/metabolismo
7.
Biochimie ; 216: 71-82, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37758157

RESUMO

Senescence due to exogenous and endogenous stresses triggers metabolic reprogramming and is associated with many pathologies, including cancer. In solid tumors, senescence promotes tumorigenesis, facilitates relapse, and changes the outcomes of anti-cancer therapies. Hence, cellular and molecular mechanisms regulating senescent pathways make attractive therapeutic targets. Cancer cells undergo metabolic reprogramming to sustain the growth-arrested state of senescence. In the present study, we aimed to understand the metabolic reprogramming in MCF-7 breast tumor cells in response to two independent inducers of DNA damage-mediated senescence, including ionizing radiation and doxorubicin. Increased DNA double-strand breaks, as demonstrated by γH2AX staining, showed a senescence phenotype, with expression of senescence-associated ß-galactosidase accompanied by the upregulation of p21 and p16 in both groups. Further, untargeted analysis of the senescence-related extracellular metabolome profile of MCF-7 cells showed significantly reduced concentrations of carnitine and pantothenic acid and increased levels of S-adenosylhomocysteine in doxorubicin-treated cells, indicating the accumulation of ROS mediated DNA damage and impaired mitochondrial membrane potential. Similarly, a significant decline in the creatine level was observed in radiation-exposed cells, suggesting an increase in oxidative stress-mediated DNA damage. Our study, therefore, provides key effectors of the metabolic changes in doxorubicin and radiation-induced early senescence in MCF-7 breast cancer cells.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Dano ao DNA , Células MCF-7 , Senescência Celular/genética
8.
OMICS ; 27(10): 445-460, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37861712

RESUMO

The use of high-throughput sequencing technologies and bioinformatic tools has greatly transformed microbial genome research. With the help of sophisticated computational tools, it has become easier to perform whole genome assembly, identify and compare different species based on their genomes, and predict the presence of genes responsible for proteins, antimicrobial resistance, and toxins. These bioinformatics resources are likely to continuously improve in quality, become more user-friendly to analyze the multiple genomic data, efficient in generating information and translating it into meaningful knowledge, and enhance our understanding of the genetic mechanism of AMR. In this manuscript, we provide an essential guide for selecting the popular resources for microbial research, such as genome assembly and annotation, antibiotic resistance gene profiling, identification of virulence factors, and drug interaction studies. In addition, we discuss the best practices in computer-oriented microbial genome research, emerging trends in microbial genomic data analysis, integration of multi-omics data, the appropriate use of machine-learning algorithms, and open-source bioinformatics resources for genome data analytics.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Biologia Computacional , Genômica , Algoritmos
9.
Funct Integr Genomics ; 23(3): 266, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37542643

RESUMO

With 46 microRNAs (miRNAs) embedded tandemly over a distance of ~100 kb, chromosome 19 microRNA cluster (C19MC) is the largest miRNA cluster in the human genome. The C19MC is transcribed from a long noncoding genomic region and is usually expressed simultaneously at a higher level. Hence, we performed an integrative multiomics data analysis to examine C19MC regulation, expression patterns, and their impact on bladder cancer (BCa). We found that 43 members of C19MC were highly expressed in BCa. However, its co-localization with recurrent copy number variation (CNV) gain was not statistically significant to implicate its upregulation. It has been reported that C19MC expression is regulated by a well-established CpG island situated 17.6 kb upstream of the transcription start site, but we found that CpG probes at this island were hypomethylated, which was not statistically significant in the BCa cohort. In addition, the promoter region of C19MC is strongly regulated by a group of seven transcription factors (NR2F6, SREBF1, TBP, GATA3, GABPB1, ETV4, and ZNF444) and five chromatin modifiers (SMC3, KDMA1, EZH2, RAD21, and CHD7). Interestingly, these 12 genes were found to be overexpressed in BCa patients. Further, C19MC targeted 42 tumor suppressor (TS) genes that were downregulated, of which 15 were significantly correlated with patient survival. Our findings suggest that transcription factors and chromatin modifiers at the promoter region may regulate C19MC overexpression. The upregulated C19MC members, transcription regulators, and TS genes can be further exploited as potential diagnostic and prognostic indicators as well as for therapeutic management of BCa.


Assuntos
MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Variações do Número de Cópias de DNA , Cromossomos Humanos Par 19/metabolismo , Multiômica , Neoplasias da Bexiga Urinária/genética , Fatores de Transcrição/genética , Cromatina , Regulação Neoplásica da Expressão Gênica , Proteínas Repressoras/genética
10.
Nat Commun ; 14(1): 4216, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452051

RESUMO

Malaria parasite lacks canonical pathways for amino acid biosynthesis and depends primarily on hemoglobin degradation and extracellular resources for amino acids. Interestingly, a putative gene for glutamine synthetase (GS) is retained despite glutamine being an abundant amino acid in human and mosquito hosts. Here we show Plasmodium GS has evolved as a unique type I enzyme with distinct structural and regulatory properties to adapt to the asexual niche. Methionine sulfoximine (MSO) and phosphinothricin (PPT) inhibit parasite GS activity. GS is localized to the parasite cytosol and abundantly expressed in all the life cycle stages. Parasite GS displays species-specific requirement in Plasmodium falciparum (Pf) having asparagine-rich proteome. Targeting PfGS affects asparagine levels and inhibits protein synthesis through eIF2α phosphorylation leading to parasite death. Exposure of artemisinin-resistant Pf parasites to MSO and PPT inhibits the emergence of viable parasites upon artemisinin treatment.


Assuntos
Artemisininas , Parasitos , Animais , Humanos , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Asparagina/genética , Aminoácidos , Glutamina/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Artemisininas/farmacologia , Parasitos/genética , Parasitos/metabolismo
11.
Mol Genet Genomics ; 298(4): 965-976, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37209156

RESUMO

Choreoacanthocytosis, one of the forms of neuroacanthocytosis, is caused by mutations in vacuolar protein sorting-associated protein A (VPS13A), and is often misdiagnosed with other form of neuroacanthocytosis with discrete genetic defects. The phenotypic variations among the patients with VPS13A mutations significantly obfuscates the understanding of the disease and treatment strategies. In this study, two unrelated cases were identified, exhibiting the core phenotype of neuroacanthocytosis but with considerable clinical heterogeneity. Case 1 presented with an additional Parkinsonism phenotype, whereas seizures were evident in case 2. To decipher the genetic basis, whole exome sequencing followed by validation with Sanger sequencing was performed. A known homozygous pathogenic nonsense mutation (c.799C > T; p.R267X) in exon 11 of the VPS13A gene was identified in case 1 that resulted in a truncated protein. A novel missense mutation (c.9263T > G; p.M3088R) in exon 69 of VPS13A identified in case 2 was predicted as pathogenic. In silico analysis of the p.M3088R mutation at the C-terminus of VPS13A suggests a loss of interaction with TOMM40 and may disrupt mitochondrial localization. We also observed an increase in mitochondrial DNA copy numbers in case 2. Mutation analysis revealed benign heterozygous variants in interacting partners of VPS13A such as VAPA in case 1. Our study confirmed the cases as ChAc and identified the novel homozygous variant of VPS13A (c.9263T > G; p.M3088R) within the mutation spectrum of VPS13A-associated ChAc. Furthermore, mutations in VPS13A and co-mutations in its potential interacting partner(s) might contribute to the diverse clinical manifestations of ChAc, which requires further study.


Assuntos
Neuroacantocitose , Humanos , Neuroacantocitose/genética , Neuroacantocitose/patologia , Sequenciamento do Exoma , Genes Modificadores , Mutação , Códon sem Sentido/genética , Proteínas de Transporte Vesicular/genética
12.
OMICS ; 27(6): 247-259, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37195730

RESUMO

Clostridioides difficile (CD) is a major planetary health burden. A Gram-positive opportunistic pathogen, CD, colonizes the large intestine and is implicated in sepsis, pseudomembranous colitis, and colorectal cancer. C. difficile infection typically following antibiotic exposure results in dysbiosis of the gut microbiome, and is one of the leading causes of diarrhea in the elderly population. While several studies have focused on the toxigenic strains of CD, gut commensals such as Clostridium butyricum (CB) and Clostridium tertium (CT) could harbor toxin/virulence genes, and thus pose a threat to human health. In this study, we sequenced and characterized three isolates, namely, CT (MALS001), CB (MALS002), and CD (MALS003) for their antimicrobial, cytotoxic, antiproliferative, genomic, and proteomic profiles. Although in vitro cytotoxic and antiproliferative potential were observed predominantly in CD MALS003, genome analysis revealed pathogenic potential of CB MALS002 and CT MALS001. Pangenome analysis revealed the presence of several accessory genes typically involved in fitness, virulence, and resistance characteristics in the core genomes of sequenced strains. The presence of an array of virulence and antimicrobial resistance genes in CB MALS002 and CT MALS001 suggests their potential role as emerging pathogens with significant impact on planetary health.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Idoso , Humanos , Clostridioides difficile/genética , Proteômica , Virulência/genética , Genômica
13.
J Ayurveda Integr Med ; 14(2): 100692, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37018893

RESUMO

BACKGROUND: The Indian traditional medicinal system, Ayurveda, describes several lifestyle practices, processes and medicines as an intervention to treat asthma. Rasayana therapy is one of them and although these treatment modules show improvement in bronchial asthma, their mechanism of action, particularly the effect on DNA methylation, is largely understudied. OBJECTIVES: Our study aimed at identifying the contribution of DNA methylation changes in modulating bronchial asthma phenotype upon Ayurveda intervention. MATERIALS AND METHODS: In this study, genome-wide methylation profiling in peripheral blood DNA of healthy controls and bronchial asthmatics before (BT) and after (AT) Ayurveda treatment was performed using array-based profiling of reference-independent methylation status (aPRIMES) coupled to microarray technique. RESULTS: We identified 4820 treatment-associated DNA methylation signatures (TADS) and 11,643 asthma-associated DNA methylation signatures (AADS), differentially methylated [FDR (≤0.1) adjusted p-values] in AT and HC groups respectively, compared to BT group. Neurotrophin TRK receptor signaling pathway was significantly enriched for differentially methylated genes in bronchial asthmatics, compared to AT and HC subjects. Additionally, we identified over 100 differentially methylated immune-related genes located in the promoter/5'-UTR regions of TADS and AADS. Various immediate-early response and immune regulatory genes with functions such as transcription factor activity (FOXD1, FOXD2, GATA6, HOXA3, HOXA5, MZF1, NFATC1, NKX2-2, NKX2-3, RUNX1, KLF11), G-protein coupled receptor activity (CXCR4, PTGER4), G-protein coupled receptor binding (UCN), DNA binding (JARID2, EBF2, SOX9), SNARE binding (CAPN10), transmembrane signaling receptor activity (GP1BB), integrin binding (ITGA6), calcium ion binding (PCDHGA12), actin binding (TRPM7, PANX1, TPM1), receptor tyrosine kinase binding (PIK3R2), receptor activity (GDNF), histone methyltransferase activity (MLL5), and catalytic activity (TSTA3) were found to show consistent methylation status between AT and HC group in microarray data. CONCLUSIONS: Our study reports the DNA methylation-regulated genes in bronchial asthmatics showing improvement in symptoms after Ayurveda intervention. DNA methylation regulation in the identified genes and pathways represents the Ayurveda intervention responsive genes and may be further explored as diagnostic, prognostic, and therapeutic biomarkers for bronchial asthma in peripheral blood.

14.
Environ Sci Pollut Res Int ; 30(23): 64025-64035, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37060405

RESUMO

Polycystic ovarian syndrome (PCOS) is a complicated endocrinopathy with an unclear etiology that afflicts fertility status in women. Although the underlying causes and pathophysiology of PCOS are not completely understood, it is suspected to be driven by environmental factors as well as genetic and epigenetic factors. Bisphenol A (BPA) is a weak estrogenic endocrine disruptor known to cause adverse reproductive outcomes in women. A growing relevance supports the notion that BPA may contribute to PCOS pathogenesis. Due to the indeterminate molecular mechanisms of BPA in PCOS endocrinopathy, we sought liquid chromatography with tandem mass spectrometry (LC-MS/MS), a metabolomics strategy that could generate a metabolic signature based on urinary BPA levels of PCOS and healthy individuals. Towards this, we examined urinary BPA levels in PCOS and healthy women by ELISA and performed univariate and chemometric analysis to distinguish metabolic patterns among high and low BPA in PCOS and healthy females, followed by pathway and biomarker analysis employing MetaboAnalyst 5.0. Our findings indicated aberrant levels of certain steroids, sphingolipids, and others, implying considerable disturbances in steroid hormone biosynthesis, linoleic, linolenic, sphingolipid metabolism, and various other pathways across target groups in comparison to healthy women with low BPA levels. Collectively, our findings provide insight into metabolic signatures of BPA-exposed PCOS women, which can potentially improve management strategies and precision medicine.


Assuntos
Síndrome do Ovário Policístico , Humanos , Feminino , Síndrome do Ovário Policístico/induzido quimicamente , Cromatografia Líquida , Espectrometria de Massas em Tandem , Plasma
15.
Funct Integr Genomics ; 23(2): 93, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941394

RESUMO

Based on the recently added high throughput analysis data on small noncoding RNAs in modulating disease pathophysiology of malaria, we performed an integrative computational analysis for exploring the role of human-host erythrocytic microRNAs (miRNAs) and their influence on parasite survival and host homeostasis. An in silico analysis was performed on transcriptomic datasets accessed from PlasmoDB and Gene Expression Omnibus (GEO) repositories analyzed using miRanda, miRTarBase, mirDIP, and miRDB to identify the candidate miRNAs that were further subjected to network analysis using MCODE and DAVID. This was followed by immune infiltration analysis and screening for RNA degradation mechanisms. Seven erythrocytic miRNAs, miR-451a, miR-92a-3p, miR-16-5p, miR-142-3p, miR-15b-5p, miR-19b-3p, and miR-223-3p showed favourable interactions with parasite genes expressed during blood stage infection. The miR-92a-3p that targeted the virulence gene PfEMP1 showed drastic reduction during infection. Performing pathway analysis for the human-host gene targets for the miRNA identified TOB1, TOB2, CNOT4, and XRN1 genes that are associated to RNA degradation processes, with the exoribonuclease XRN1, highly enriched in the malarial samples. On evaluating the role of exoribonucleases in miRNA degradation further, the pattern of Plasmodium falciparum_XRN1 showed increased levels during infection thus suggesting a defensive role for parasite survival. This study identifies miR-92a-3p, a member of C13orf25/ miR-17-92 cluster, as a novel miRNA inhibitor of the crucial parasite genes responsible for symptomatic malaria. Evidence for a plausible link to chromosome 13q31.3 loci controlling the epigenetic disease regulation is also suggested.


Assuntos
Malária , MicroRNAs , Proteínas de Protozoários , Humanos , Eritrócitos/metabolismo , Perfilação da Expressão Gênica , Malária/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Transcriptoma , Proteínas de Protozoários/metabolismo , Plasmodium falciparum
16.
Mol Cell Biochem ; 478(11): 2581-2606, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36905477

RESUMO

Cervical cancer being one of the primary causes of high mortality rates among women is an area of concern, especially with ineffective treatment strategies. Extensive studies are carried out to understand various aspects of cervical cancer initiation, development and progression; however, invasive cervical squamous cell carcinoma has poor outcomes. Moreover, the advanced stages of cervical cancer may involve lymphatic circulation with a high risk of tumor recurrence at distant metastatic sites. Dysregulation of the cervical microbiome by human papillomavirus (HPV) together with immune response modulation and the occurrence of novel mutations that trigger genomic instability causes malignant transformation at the cervix. In this review, we focus on the major risk factors as well as the functionally altered signaling pathways promoting the transformation of cervical intraepithelial neoplasia into invasive squamous cell carcinoma. We further elucidate genetic and epigenetic variations to highlight the complexity of causal factors of cervical cancer as well as the metastatic potential due to the changes in immune response, epigenetic regulation, DNA repair capacity, and cell cycle progression. Our bioinformatics analysis on metastatic and non-metastatic cervical cancer datasets identified various significantly and differentially expressed genes as well as the downregulation of potential tumor suppressor microRNA miR-28-5p. Thus, a comprehensive understanding of the genomic landscape in invasive and metastatic cervical cancer will help in stratifying the patient groups and designing potential therapeutic strategies.

17.
OMICS ; 27(2): 51-61, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36753700

RESUMO

Foot ulcers and associated infections significantly contribute to morbidity and mortality in diabetes. While diverse pathogens are found in the diabetes-related infected ulcers, Staphylococcus aureus remains one of the most virulent and widely prevalent pathogens. The high prevalence of S. aureus in chronic wound infections, especially in clinical settings, is attributed to its ability to evolve and acquire resistance against common antibiotics and to elicit an array of virulence factors. In this study, whole genome comparison of four strains of S. aureus (MUF168, MUF256, MUM270, and MUM475) isolated from diabetic foot ulcer (DFU) infections showing varying resistance patterns was carried out to study the genomic similarity, antibiotic resistance profiling, associated virulence factors, and sequence variations in drug targets. The comparative genome analysis showed strains MUM475 and MUM270 to be highly resistant, MUF256 with moderate levels of resistance, and MUF168 to be the least resistant. Strain MUF256 and MUM475 harbored more virulence factors compared with other two strains. Deleterious sequence variants were observed suggesting potential role in altering drug targets and drug efficacy. This comparative whole genome study offers new molecular insights that may potentially inform evidence-based diagnosis and treatment of DFUs in the clinic.


Assuntos
Diabetes Mellitus , Pé Diabético , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/genética , Pé Diabético/tratamento farmacológico , Antibacterianos/uso terapêutico , Fatores de Virulência/genética
18.
Mitochondrion ; 69: 43-56, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36690315

RESUMO

Mitochondria play a central role in oxidative phosphorylation (OXPHOS), bioenergetics linked with ATP production, fatty acids biosynthesis, calcium signaling, cell cycle regulation, apoptosis, and innate immune response. Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infection manipulates the host cellular machinery for its survival and replication in the host cell. The infectiaon causes perturbed the cellular metabolism that favours viral replication leading to mitochondrial dysfunction and chronic inflammation. By localizing to the mitochondria, SARS CoV proteins increase reactive oxygen species (ROS) levels, perturbation of Ca2+ signaling, changes in mtDNA copy number, mitochondrial membrane potential (MMP), mitochondrial mass, and induction of mitophagy. These proteins also influence the fusion and fission kinetics, size, structure, and distribution of mitochondria in the infected host cells. This results in compromised bioenergetics, altered metabolism, and innate immune signaling, and hence can be a key player in determining the outcome of SARS-CoV infection. SARS-CoV infection contributes to stress and activates apoptotic pathways. This review summarizes how mitochondrial function and dynamics are affected by SARS-CoV and how the mitochondria-SARS-CoV interaction benefits viral survival and growth by evading innate host immunity. We also highlight how the SARS-CoV-mediated mitochondrial dysfunction contributes to post-COVID complications. Besides, a discussion on targeting virus-mitochondria interactions as a therapeutic strategy is presented.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , COVID-19/complicações , COVID-19/metabolismo , Mitocôndrias/metabolismo , DNA Mitocondrial/metabolismo , Imunidade Inata
19.
Biologia (Bratisl) ; : 1-5, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36643690

RESUMO

The emergence of drug resistance in Plasmodium jeopardises worldwide malaria eradication efforts necessitating novel therapeutic approaches and therefore the identification of key metabolic pathways of parasite and human host for drug development garners importance. Enzymopathies like glucose-6-phosphate-dehydrogenase (G6PD) and pyruvate kinase (PK) deficiencies have been shown to protect against the severe consequences of malaria. Glycome profiles and the regulatory mechanisms involving the microRNAs or transcription factors' expression related to the histo-blood group glycogenes may add up to resolve the underlying pathogenesis. The glycan derivatives viz. heparin-like molecules (HLMs) interrupt parasite proliferation that can be exploited as leads for alternative therapies. The Plasmodium invasion of erythrocytes involve events of receptor recognition, adhesion, and ligand interactions. Since post translational modifications like N-glycosylation of merozoite surface proteins and several erythrocyte cluster of differentiation (CD) antigens and complement receptor, among others, are crucial to parasite invasion, understanding of post translational modification of proteins involved in the parasite-host interactions should identify viable antimalarial strategies.

20.
Mol Pharmacol ; 103(3): 145-157, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36414374

RESUMO

Despite the progress made in the development of new antiepileptic drugs (AEDs), poor response to them is a rising concern in epilepsy treatment. Of several hypotheses explaining AED treatment failure, the most promising theory is the overexpression of multidrug transporters belonging to ATP-binding cassette (ABC) transporter family at blood-brain barrier. Previous data show that AEDs themselves can induce these transporters, in turn affecting their own brain bioavailability. Presently, this induction and the underlying regulatory mechanism involved at human blood-brain barrier is not well elucidated. Herein, we sought to explore the effect of most prescribed first- and second-line AEDs on multidrug transporters in human cerebral microvascular endothelial cells, hCMEC/D3. Our work demonstrated that exposure of these cells to valproic acid (VPA) induced mRNA, protein, and functional activity of breast cancer resistance protein (BCRP/ABCG2). On examining the substrate interaction status of AEDs with BCRP, VPA, phenytoin, and lamotrigine were found to be potential BCRP substrates. Furthermore, we observed that siRNA-mediated knockdown of peroxisome proliferator-activated receptor alpha (PPARα) or use of PPARα antagonist, resulted in attenuation of VPA-induced BCRP expression and transporter activity. VPA was found to increase PPARα expression and trigger its translocation from cytoplasm to nucleus. Findings from chromatin immunoprecipitation and luciferase assays showed that VPA enhances the binding of PPARα to its response element in the ABCG2 promoter, resulting in elevated ABCG2 transcriptional activity. Taken together, these in vitro findings highlight PPARα as the potential molecular target to prevent VPA-mediated BCRP induction, which may have important implications in VPA pharmacoresistance. SIGNIFICANCE STATEMENT: Induction of multidrug transporters at blood-brain barrier can largely affect the bioavailability of the substrate antiepileptic drugs in the brains of patients with epilepsy, thus affecting their therapeutic efficacy. The present study reports a mechanistic pathway of breast cancer resistance protein (BCRP/ABCG2) upregulation by valproic acid in human brain endothelial cells via peroxisome proliferator-activated receptor alpha involvement, thereby providing a potential strategy to prevent valproic acid pharmacoresistance in epilepsy.


Assuntos
Neoplasias da Mama , Epilepsia , Humanos , Feminino , PPAR alfa/metabolismo , Ácido Valproico/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Anticonvulsivantes/farmacologia , Regulação para Cima , Células Endoteliais/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Encéfalo/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Neoplasias da Mama/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...