Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 374(6572): 1237-1241, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34855491

RESUMO

The discovery of topological order has revised the understanding of quantum matter and provided the theoretical foundation for many quantum error­correcting codes. Realizing topologically ordered states has proven to be challenging in both condensed matter and synthetic quantum systems. We prepared the ground state of the toric code Hamiltonian using an efficient quantum circuit on a superconducting quantum processor. We measured a topological entanglement entropy near the expected value of ­ln2 and simulated anyon interferometry to extract the braiding statistics of the emergent excitations. Furthermore, we investigated key aspects of the surface code, including logical state injection and the decay of the nonlocal order parameter. Our results demonstrate the potential for quantum processors to provide insights into topological quantum matter and quantum error correction.

2.
Nat Commun ; 12(1): 1761, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741936

RESUMO

Quantum computing can become scalable through error correction, but logical error rates only decrease with system size when physical errors are sufficiently uncorrelated. During computation, unused high energy levels of the qubits can become excited, creating leakage states that are long-lived and mobile. Particularly for superconducting transmon qubits, this leakage opens a path to errors that are correlated in space and time. Here, we report a reset protocol that returns a qubit to the ground state from all relevant higher level states. We test its performance with the bit-flip stabilizer code, a simplified version of the surface code for quantum error correction. We investigate the accumulation and dynamics of leakage during error correction. Using this protocol, we find lower rates of logical errors and an improved scaling and stability of error suppression with increasing qubit number. This demonstration provides a key step on the path towards scalable quantum computing.

3.
Phys Rev Lett ; 124(24): 240502, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32639797

RESUMO

Effective quantum communication between remote quantum nodes requires high fidelity quantum state transfer and remote entanglement generation. Recent experiments have demonstrated that microwave photons, as well as phonons, can be used to couple superconducting qubits, with a fidelity limited primarily by loss in the communication channel [P. Kurpiers et al., Nature (London) 558, 264 (2018)NATUAS0028-083610.1038/s41586-018-0195-y; C. J. Axline et al., Nat. Phys. 14, 705 (2018)NPAHAX1745-247310.1038/s41567-018-0115-y; P. Campagne-Ibarcq et al., Phys. Rev. Lett. 120, 200501 (2018)PRLTAO0031-900710.1103/PhysRevLett.120.200501; N. Leung et al., npj Quantum Inf. 5, 18 (2019)2056-638710.1038/s41534-019-0128-0; Y. P. Zhong et al., Nat. Phys. 15, 741 (2019)NPAHAX1745-247310.1038/s41567-019-0507-7; A. Bienfait et al., Science 364, 368 (2019)SCIEAS0036-807510.1126/science.aaw8415]. Adiabatic protocols can overcome channel loss by transferring quantum states without populating the lossy communication channel. Here, we present a unique superconducting quantum communication system, comprising two superconducting qubits connected by a 0.73 m-long communication channel. Significantly, we can introduce large tunable loss to the channel, allowing exploration of different entanglement protocols in the presence of dissipation. When set for minimum loss in the channel, we demonstrate an adiabatic quantum state transfer protocol that achieves 99% transfer efficiency as well as the deterministic generation of entangled Bell states with a fidelity of 96%, all without populating the intervening communication channel, and competitive with a qubit-resonant mode-qubit relay method. We also explore the performance of the adiabatic protocol in the presence of significant channel loss, and show that the adiabatic protocol protects against loss in the channel, achieving higher state transfer and entanglement fidelities than the relay method.

4.
Phys Rev Lett ; 123(21): 210501, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31809160

RESUMO

We demonstrate diabatic two-qubit gates with Pauli error rates down to 4.3(2)×10^{-3} in as fast as 18 ns using frequency-tunable superconducting qubits. This is achieved by synchronizing the entangling parameters with minima in the leakage channel. The synchronization shows a landscape in gate parameter space that agrees with model predictions and facilitates robust tune-up. We test both iswap-like and cphase gates with cross-entropy benchmarking. The presented approach can be extended to multibody operations as well.

5.
Science ; 364(6438): 368-371, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31023919

RESUMO

Phonons, and in particular surface acoustic wave phonons, have been proposed as a means to coherently couple distant solid-state quantum systems. Individual phonons in a resonant structure can be controlled and detected by superconducting qubits, enabling the coherent generation and measurement of complex stationary phonon states. We report the deterministic emission and capture of itinerant surface acoustic wave phonons, enabling the quantum entanglement of two superconducting qubits. Using a 2-millimeter-long acoustic quantum communication channel, equivalent to a 500-nanosecond delay line, we demonstrate the emission and recapture of a phonon by one superconducting qubit, quantum state transfer between two superconducting qubits with a 67% efficiency, and, by partial transfer of a phonon, generation of an entangled Bell pair with a fidelity of 84%.

6.
Nature ; 563(7733): 661-665, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30464339

RESUMO

One of the hallmarks of quantum physics is the generation of non-classical quantum states and superpositions, which has been demonstrated in several quantum systems, including ions, solid-state qubits and photons. However, only indirect demonstrations of non-classical states have been achieved in mechanical systems, despite the scientific appeal and technical utility of such a capability1,2, including in quantum sensing, computation and communication applications. This is due in part to the highly linear response of most mechanical systems, which makes quantum operations difficult, as well as their characteristically low frequencies, which hinder access to the quantum ground state3-7. Here we demonstrate full quantum control of the mechanical state of a macroscale mechanical resonator. We strongly couple a surface acoustic-wave8 resonator to a superconducting qubit, using the qubit to control and measure quantum states in the mechanical resonator. We generate a non-classical superposition of the zero- and one-phonon Fock states and map this and other states using Wigner tomography9-14. Such precise, programmable quantum control is essential to a range of applications of surface acoustic waves in the quantum limit, including the coupling of disparate quantum systems15,16.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...