Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 26(6): A227-A239, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29609333

RESUMO

Ultrashort pulse laser systems enable new approaches of material processing and manufacturing with enhanced precision and productivity. Time- and cost-effectiveness in the context of the industrialization of ultrashort laser pulse processes require an improvement of processing speed, which is of key importance for strengthening industrial photonics based manufacturing and extending its field of applications. This article presents results on improving the speed of a laser process by parallelization for creating light deflecting volume optics. Diffractive optical elements are fabricated directly inside the encapsulant of solar modules by utilizing a spatial light modulator based parallel laser microfabrication method. The fabricated volume optical elements effectively deflect light away from front side electrodes and significantly reduce the corresponding optical losses.

2.
Appl Opt ; 55(9): 2224-9, 2016 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-27140556

RESUMO

We show that with an appropriate combination of two optical simulation techniques-classical ray-tracing and the finite difference time domain method-an optical device containing multiple diffractive and refractive optical elements can be accurately simulated in an iterative simulation approach. We compare the simulation results with experimental measurements of the device to discuss the applicability and accuracy of our iterative simulation procedure.

4.
Appl Opt ; 52(3): 388-93, 2013 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-23338184

RESUMO

Research into the integration of optical interconnects in printed circuit boards (PCBs) is rapidly gaining interest due to the increase in data transfer speeds now required along with the need for miniaturized devices with increased complexity and functionality. We present a method that involves embedding optoelectronic components in a polymeric material and fabricating optical waveguides in one step. A silanol-terminated polysiloxane cross-linked with an acryloxy functional silane is utilized as a matrix material into which the 3D optical waveguides are inscribed by two-photon-induced polymerization. A pulsed femtosecond laser is used to directly write optical waveguides into the material, forming an optical link between lasers and photodiodes that are directly mounted on a specially designed PCB. The boards produced were characterized by monitoring the transmitted photocurrent as well as temperature-dependent data transmission properties. Data rates exceeding 4 Gbit/s were achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...