Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36991633

RESUMO

Nowadays, the use of renewable, green/eco-friendly technologies is attracting the attention of researchers, with a view to overcoming recent challenges that must be faced to guarantee the availability of Electric Vehicles (EVs). Therefore, this work proposes a methodology based on Genetic Algorithms (GA) and multivariate regression for estimating and modeling the State of Charge (SOC) in Electric Vehicles. Indeed, the proposal considers the continuous monitoring of six load-related variables that have an influence on the SOC (State of Charge), specifically, the vehicle acceleration, vehicle speed, battery bank temperature, motor RPM, motor current, and motor temperature. Thus, these measurements are evaluated in a structure comprised of a Genetic Algorithm and a multivariate regression model in order to find those relevant signals that better model the State of Charge, as well as the Root Mean Square Error (RMSE). The proposed approach is validated under a real set of data acquired from a self-assembly Electric Vehicle, and the obtained results show a maximum accuracy of approximately 95.5%; thus, this proposed method can be applied as a reliable diagnostic tool in the automotive industry.

2.
Sensors (Basel) ; 21(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502720

RESUMO

Scientific and technological advances in the field of rotatory electrical machinery are leading to an increased efficiency in those processes and systems in which they are involved. In addition, the consideration of advanced materials, such as hybrid or ceramic bearings, are of high interest towards high-performance rotary electromechanical actuators. Therefore, most of the diagnosis approaches for bearing fault detection are highly dependent of the bearing technology, commonly focused on the metallic bearings. Although the mechanical principles remain as the basis to analyze the characteristic patterns and effects related to the fault appearance, the quantitative response of the vibration pattern considering different bearing technology varies. In this regard, in this work a novel data-driven diagnosis methodology is proposed based on deep feature learning applied to the diagnosis and identification of bearing faults for different bearing technologies, such as metallic, hybrid and ceramic bearings, in electromechanical systems. The proposed methodology consists of three main stages: first, a deep learning-based model, supported by stacked autoencoder structures, is designed with the ability of self-adapting to the extraction of characteristic fault-related features from different signals that are processed in different domains. Second, in a feature fusion stage, information from different domains is integrated to increase the posterior discrimination capabilities during the condition assessment. Third, the bearing assessment is achieved by a simple softmax layer to compute the final classification results. The achieved results show that the proposed diagnosis methodology based on deep feature learning can be effectively applied to the diagnosis and identification of bearing faults for different bearing technologies, such as metallic, hybrid and ceramic bearings, in electromechanical systems. The proposed methodology is validated in front of two different electromechanical systems and the obtained results validate the adaptability and performance of the proposed approach to be considered as a part of the condition-monitoring strategies where different bearing technologies are involved.


Assuntos
Algoritmos , Vibração , Cerâmica , Análise de Falha de Equipamento , Modalidades de Fisioterapia
3.
Sensors (Basel) ; 21(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502724

RESUMO

The rapid growth in the industrial sector has required the development of more productive and reliable machinery, and therefore, leads to complex systems. In this regard, the automatic detection of unknown events in machinery represents a greater challenge, since uncharacterized catastrophic faults can occur. However, the existing methods for anomaly detection present limitations when dealing with highly complex industrial systems. For that purpose, a novel fault diagnosis methodology is developed to face the anomaly detection. An unsupervised anomaly detection framework named deep-autoencoder-compact-clustering one-class support-vector machine (DAECC-OC-SVM) is presented, which aims to incorporate the advantages of automatically learnt representation by deep neural network to improved anomaly detection performance. The method combines the training of a deep-autoencoder with clustering compact model and a one-class support-vector-machine function-based outlier detection method. The addressed methodology is applied on a public rolling bearing faults experimental test bench and on multi-fault experimental test bench. The results show that the proposed methodology it is able to accurately to detect unknown defects, outperforming other state-of-the-art methods.


Assuntos
Redes Neurais de Computação , Máquina de Vetores de Suporte , Análise por Conglomerados , Aprendizagem
4.
Sensors (Basel) ; 20(14)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708574

RESUMO

Fault diagnosis in manufacturing systems represents one of the most critical challenges dealing with condition-based monitoring in the recent era of smart manufacturing. In the current Industry 4.0 framework, maintenance strategies based on traditional data-driven fault diagnosis schemes require enhanced capabilities to be applied over modern production systems. In fact, the integration of multiple mechanical components, the consideration of multiple operating conditions, and the appearance of combined fault patterns due to eventual multi-fault scenarios lead to complex electromechanical systems requiring advanced monitoring strategies. In this regard, data fusion schemes supported with advanced deep learning technology represent a promising approach towards a big data paradigm using cloud-based software services. However, the deep learning models' structure and hyper-parameters selection represent the main limitation when applied. Thus, in this paper, a novel deep-learning-based methodology for fault diagnosis in electromechanical systems is presented. The main benefits of the proposed methodology are the easiness of application and high adaptability to available data. The methodology is supported by an unsupervised stacked auto-encoders and a supervised discriminant analysis.

5.
ISA Trans ; 106: 367-381, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32653086

RESUMO

The detection of faulty machinery and its automated diagnosis is an industrial priority because efficient fault diagnosis implies efficient management of the maintenance times, reduction of energy consumption, reduction in overall costs and, most importantly, the availability of the machinery is ensured. Thus, this paper presents a new intelligent multi-fault diagnosis method based on multiple sensor information for assessing the occurrence of single, combined, and simultaneous faulty conditions in an induction motor. The contribution and novelty of the proposed method include the consideration of different physical magnitudes such as vibrations, stator currents, voltages, and rotational speed as a meaningful source of information of the machine condition. Moreover, for each available physical magnitude, the reduction of the original number of attributes through the Principal Component Analysis leads to retain a reduced number of significant features that allows achieving the final diagnosis outcome by a multi-label classification tree. The effectiveness of the method was validated by using a complete set of experimental data acquired from a laboratory electromechanical system, where a healthy and seven faulty scenarios were assessed. Also, the interpretation of the results do not require any prior expert knowledge and the robustness of this proposal allows its application in industrial applications, since it may deal with different operating conditions such as different loads and operating frequencies. Finally, the performance was evaluated using multi-label measures, which to the best of our knowledge, is an innovative development in the field condition monitoring and fault identification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...