Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(42): 48913-48929, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37847523

RESUMO

Zinc (Zn) metal and its alloys have received a lot of interest in biomedical applications due to their biodegradability, biocompatibility, antimicrobial activity, and ability to stimulate tissue regeneration. Bulk Zn has been successfully utilized in a variety of implant applications, most notably as bioabsorbable cardiac stents and orthopedic fixation devices, where it provides adequate mechanical properties while also releasing helpful Zn ions (Zn2+) during degradation. Such beneficial ions are dose-dependent and, when released in excess, can induce cellular toxicity. In this study, we hypothesize that embedding Zn metal particles into a polymer nanofibrous scaffold will enable control of the degradation and time release of the Zn2+. We designed and fabricated two polymer scaffolds, polycaprolactone (PCL) and polycaprolactone-chitosan (PCL-CH). Each scaffold had an increasing amount of Zn. Several physicochemical properties such as fiber morphology, crystallinity, mechanical strength, hydrophilicity, degradation and release of Zn2+, thermal properties, chemical compositions, and so forth were characterized and compared with the PCL fibrous scaffold. The biological properties of the scaffolds were evaluated in vitro utilizing direct and indirect cytotoxicity assays and cell viability. All the data show that the addition of Zn changed various physical properties of the PCL and PCL-CH scaffolds except their chemical structure. Further investigation reveals that the PCL-CH scaffolds degrade the Zn particles relatively faster than the PCL because the presence of the hydrophilic CH influences the faster release of Zn2+ in cell culture conditions as compared to the PCL fibrous scaffold. The combined advantages of CH and Zn in the PCL scaffold enriched 3T3 fibroblast cells' survival and proliferation except the ones with the higher concentration of Zn particles. These new composite scaffolds are promising and can be further considered for tissue healing and regeneration applications.


Assuntos
Quitosana , Alicerces Teciduais , Alicerces Teciduais/química , Engenharia Tecidual , Zinco , Poliésteres/química , Quitosana/química , Polímeros , Íons , Proliferação de Células
2.
J Biomed Mater Res A ; 111(8): 1185-1199, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36708250

RESUMO

Engineered composite scaffolds composed of natural and synthetic polymers exhibit cooperation at the molecular level that closely mimics tissue extracellular matrix's (ECM) physical and chemical characteristics. However, due to the lack of smooth intermix capability of natural and synthetic materials in the solution phase, bio-inspired composite material development has been quite challenged. In this research, we introduced new bio-inspired material blending techniques to fabricate nanofibrous composite scaffolds of chitin nanofibrils (CNF), a natural hydrophilic biomaterial and poly (ɛ-caprolactone) (PCL), a synthetic hydrophobic-biopolymer. CNF was first prepared by acid hydrolysis technique and dispersed in trifluoroethanol (TFE); and second, PCL was dissolved in TFE and mixed with the chitin solution in different ratios. Electrospinning and spin-coating technology were used to form nanofibrous mesh and films, respectively. Physicochemical properties, such as mechanical strength, and cellular compatibility, and structural parameters, such as morphology, and crystallinity, were determined. Toward the potential use of this composite materials as a support membrane in blood-brain barrier application (BBB), human umbilical vein endothelial cells (HUVECs) were cultured, and transendothelial electrical resistance (TEER) was measured. Experimental results of the composite materials with PCL/CNF ratios from 100/00 to 25/75 showed good uniformity in fiber morphology and suitable mechanical properties. They retained the excellent ECM-like properties that mimic synthetic-bio-interface that has potential application in biomedical fields, particularly tissue engineering and BBB applications.


Assuntos
Quitina , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Quitina/farmacologia , Células Endoteliais
3.
RSC Adv ; 11(9): 4921-4934, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35424445

RESUMO

Nanoparticle (NP) toxicity assessment is a critical step in assessing the health impacts of NP exposure to both consumers and occupational workers. In vitro assessment models comprising cells cultured in a two-dimensional tissue culture plate (2D-TCP) are an efficient and cost-effective choice for estimating the safety risks of NPs. However, in vitro culture of cells in 2D-TCPs distorts cell-integrin and cell-cell interactions and is not able to replicate an in vivo phenotype. Three-dimensional (3D) in vitro platforms provide a unique alternative to bridge the gap between traditional 2D in vitro and in vivo models. In this study, novel microcapsules of alginate hydrogel incorporated with natural polymeric nanofibers (chitin nanofibrils) and synthetic polymeric nanofibers poly(lactide-co-glycolide) are designed as a 3D in vitro platform. This study demonstrates for the first time that electrodynamic assisted self-assembled fibrous 3D hydrogel (3D-SAF hydrogel) microcapsules with a size in the range of 300-500 µm in diameter with a Young's modulus of 12.7-42 kPa can be obtained by varying the amount of nanofibers in the hydrogel precursor solutions. The 3D-SAF microcapsules were found to mimic the in vivo cellular microenvironment for cells to grow, as evaluated using A549 cells. Higher cellular spreading and prolonged proliferation of A549 cells were observed in 3D-SAF microcapsules compared to control microcapsules without the nanofibers. The 3D-SAF microcapsule integrated well plate was used to assess the toxicity of model NPs, e.g., Al2O3 and ZnO. The toxicity levels of the model NPs were found to be dependent on the chemistry of the NPs and their physical agglomeration in the test media. Our results demonstrate that 3D-SAF microcapsules with an in vivo mimicking microenvironment can be developed as a physiologically relevant platform for high-throughput toxicity screening of NPs or pharmaceutical drugs.

4.
Nanoscale ; 12(46): 23556-23569, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33135713

RESUMO

Electrospun nanofiber (EN) technology has been used in the past to generate electrostatically charged multilayer-nanofibers. This platform offers versatile applications including in tissue engineering, drug delivery, wound dressings, and high-efficiency particulate air filters. In this study, we synthesized for the first time nanonet-nanofiber electrospun meshes (NNEMs) of polycaprolactone (PCL)-chitosan (CH) using EN technology. The fabricated NNEMs were utilized for high payload delivery and controlled release of a water-soluble drug. Diclofenac Sodium (DS), a hydrophilic anti-inflammatory drug, was selected as a model drug because of its high aqueous solubility and poor compatibility with insoluble polymers. Various compositions of DS drug-loaded NNEMs (DS-NNEMs) were synthesized. The physicochemical properties such as structure, morphology, and aqueous stability and the chemical properties of DS-NNEMs were evaluated. High drug entrapment efficiency and concentration-dependent drug release patterns were investigated for up to 14 days. Furthermore, the biocompatibility of the DS-NNEMs was tested with NIH 3T3 cells. The physicochemical characterization results showed that the DS drug is a key contributing factor in the generation of nanonet-nanofiber networks during electrospinning. DS-NNEMs also enhanced 3T3 cell adhesion, viability, and proliferation in the nanonet-nano fiber network through the controlled release of DS. The presented EN technology-based biodegradable NNEM material is not only limited for the controlled release of hydrophilic anti-inflammatory drugs, but also can be a suitable platform for loading and release of antiviral drugs.


Assuntos
Quitosana , Nanofibras , Animais , Diclofenaco , Liberação Controlada de Fármacos , Camundongos , Poliésteres , Telas Cirúrgicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...