Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Microbiol ; 42(5): 1325-35, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11886562

RESUMO

We have proposed that the [Het-s] infectious cytoplasmic element of the filamentous fungus Podospora anserina is the prion form of the HET-s protein. The HET-s protein is involved in a cellular recognition phenomenon characteristic of filamentous fungi and known as heterokaryon incompatibility. Under the prion form, the HET-s protein causes a cell death reaction when co-expressed with the HET-S protein, from which it differs by only 13 amino acid residues. We show here that the HET-s protein can exist as two alternative states, a soluble and an aggregated form in vivo. As shown for the yeast prions, transition to the infectious prion form leads to aggregation of a HET-s--green fluorescent protein (GFP) fusion protein. The HET-s protein is aggregated in vivo when highly expressed. However, we could not demonstrate HET-s aggregation at wild-type expression levels, which could indicate that only a small fraction of the HET-s protein is in its aggregated form in vivo in wild-type [Het-s] strains. The antagonistic HET-S form is soluble even at high expression level. A double amino acid substitution in HET-s (D23A P33H), which abolishes prion infectivity, suppresses in vivo aggregation of the GFP fusion. Together, these results further support the model that the [Het-s] element corresponds to an abnormal self-perpetuating aggregated form of the HET-s protein.


Assuntos
Proteínas Fúngicas/metabolismo , Sordariales/genética , Agregação Celular , Primers do DNA , Proteínas Fúngicas/genética , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Microscopia de Fluorescência , Reação em Cadeia da Polimerase , Proteínas Recombinantes de Fusão/metabolismo , Sordariales/patogenicidade , Sordariales/fisiologia , Virulência/genética
3.
Curr Opin Microbiol ; 3(6): 608-12, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11121781

RESUMO

In filamentous fungi, vegetative cell fusion between genotypically distinct individuals leads to a cell-death reaction known as vegetative or heterokaryon incompatibility. Genes involved in this reaction have been characterised molecularly. We can now begin to get a better understanding of the mechanism and the biological significance of this intriguing phenomenon.


Assuntos
Ascomicetos/fisiologia , Genes Fúngicos , Sequência de Aminoácidos , Ascomicetos/genética , Proteínas Fúngicas/genética , Príons/genética , Alinhamento de Sequência
4.
Microbiol Mol Biol Rev ; 64(3): 489-502, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10974123

RESUMO

Filamentous fungi spontaneously undergo vegetative cell fusion events within but also between individuals. These cell fusions (anastomoses) lead to cytoplasmic mixing and to the formation of vegetative heterokaryons (i.e., cells containing different nuclear types). The viability of these heterokaryons is genetically controlled by specific loci termed het loci (for heterokaryon incompatibility). Heterokaryotic cells formed between individuals of unlike het genotypes undergo a characteristic cell death reaction or else are severely inhibited in their growth. The biological significance of this phenomenon remains a puzzle. Heterokaryon incompatibility genes have been proposed to represent a vegetative self/nonself recognition system preventing heterokaryon formation between unlike individuals to limit horizontal transfer of cytoplasmic infectious elements. Molecular characterization of het genes and of genes participating in the incompatibility reaction has been achieved for two ascomycetes, Neurospora crassa and Podospora anserina. These analyses have shown that het genes are diverse in sequence and do not belong to a gene family and that at least some of them perform cellular functions in addition to their role in incompatibility. Divergence between the different allelic forms of a het gene is generally extensive, but single-amino-acid differences can be sufficient to trigger incompatibility. In some instances het gene evolution appears to be driven by positive selection, which suggests that the het genes indeed represent recognition systems. However, work on nonallelic incompatibility systems in P. anserina suggests that incompatibility might represent an accidental activation of a cellular system controlling adaptation to starvation.


Assuntos
Ascomicetos/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Genes Supressores , Neurospora crassa/genética
5.
Curr Genet ; 38(1): 39-47, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10953880

RESUMO

The het-c locus controls heterokaryon formation in Neurospora crassa. It is subject to balancing selection operating to maintain polymorphism at that locus in natural populations. We have isolated hch, the het-c homolog from the related species Podospora anserina (hch for het-c homolog), in order to determine if this gene also functions as a het gene in that species. The het-c and hch sequences are highly similar but differ in the region defining allele specificity in N. crassa het-c. Analysis of hch variability in 11 natural P. anserina isolates with different het genotypes revealed no polymorphism. This suggested that hch does not function as a het gene. However, heterologous expression of the N. crassa het-cPA allele in P. anserina triggers a growth defect reminiscent of the het-c incompatibility reaction.


Assuntos
Proteínas Fúngicas/genética , Neurospora crassa/genética , Sordariales/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Genótipo , Dados de Sequência Molecular , Biossíntese de Proteínas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sordariales/citologia , Sordariales/crescimento & desenvolvimento , Transformação Genética
6.
Genetics ; 153(4): 1629-40, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10581272

RESUMO

The het-s locus is one of nine known het (heterokaryon incompatibility) loci of the fungus Podospora anserina. This locus exists as two wild-type alleles, het-s and het-S, which encode 289 amino acid proteins differing at 13 amino acid positions. The het-s and het-S alleles are incompatible as their coexpression in the same cytoplasm causes a characteristic cell death reaction. We have proposed that the HET-s protein is a prion analog. Strains of the het-s genotype exist in two phenotypic states, the neutral [Het-s*] and the active [Het-s] phenotype. The [Het-s] phenotype is infectious and is transmitted to [Het-s*] strains through cytoplasmic contact. het-s and het-S were associated in a single haploid nucleus to generate a self-incompatible strain that displays a restricted and abnormal growth. In the present article we report the molecular characterization of a collection of mutants that restore the ability of this self-incompatible strain to grow. We also describe the functional analysis of a series of deletion constructs and site-directed mutants. Together, these analyses define positions critical for reactivity and allele specificity. We show that a 112-amino-acid-long N-terminal peptide of HET-s retains [Het-s] activity. Moreover, expression of a mutant het-s allele truncated at position 26 is sufficient to allow propagation of the [Het-s] prion analog.


Assuntos
Ascomicetos/genética , Príons/genética , Substituição de Aminoácidos , Sequência de Bases , Primers do DNA , Mutagênese , Príons/biossíntese , Príons/química
7.
Genomics ; 52(3): 305-11, 1998 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-9790749

RESUMO

We report the isolation and characterization of a novel cDNA IGSF3 that contains a 3648-bp open reading frame encoding an apparent immunoglobulin (Ig)-like membrane protein characterized by eight Ig domains. IGSF3 has an overall structural similarity and strong sequence similarity to V7, a human leukocyte surface protein. The IGSF3 mRNA is highly expressed in placenta, kidney, and lung, but is also present in a wide range of other human tissues. Although a small internal sequence of the IGSF3 cDNA hybridizes to a YAC derived from the centromeric region of chromosome 21, in situ hybridization experiments on human metaphase chromosomes show that the gene corresponding to the long cDNA that we cloned is located in chromosome band 1p13 and that related sequences are located on chromosomes 2 and 13. These data serve to emphasize the potential difficulties in transcriptional mapping in centromeric regions.


Assuntos
Cromossomos Humanos Par 1/genética , Imunoglobulinas/química , Imunoglobulinas/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Sequência de Aminoácidos , Sequência de Bases , Centrômero/genética , Mapeamento Cromossômico , Cromossomos Artificiais de Levedura/genética , Clonagem Molecular , Humanos , Hibridização In Situ , Dados de Sequência Molecular , Mapeamento Físico do Cromossomo , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
8.
Proc Natl Acad Sci U S A ; 95(21): 12398-403, 1998 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-9770498

RESUMO

In filamentous fungi, het loci (for heterokaryon incompatibility) are believed to regulate self/nonself-recognition during vegetative growth. As filamentous fungi grow, hyphal fusion occurs within an individual colony to form a network. Hyphal fusion can occur also between different individuals to form a heterokaryon, in which genetically distinct nuclei occupy a common cytoplasm. However, heterokaryotic cells are viable only if the individuals involved have identical alleles at all het loci. One het locus, het-c, has been characterized at the molecular level in Neurospora crassa and encodes a glycine-rich protein. In an effort to understand the role of this locus in filamentous fungi, we chose to study its evolution by analyzing het-c sequence variability in species within Neurospora and related genera. We determined that the het-c locus was polymorphic in a field population of N. crassa with close to equal frequency of each of the three allelic types. Different species and even genera within the Sordariaceae shared het-c polymorphisms, indicating that these polymorphisms originated in an ancestral species. Finally, an analysis of the het-c specificity region shows a high occurrence of nonsynonymous substitution. The persistence of allelic lineages, the nearly equal allelic distribution within populations, and the high frequency of nonsynonymous substitutions in the het-c specificity region suggest that balancing selection has operated to maintain allelic diversity at het-c. Het-c shares this particular evolutionary characteristic of departing from neutrality with other self/nonself-recognition systems such as major histocompatibility complex loci in mammals and the S (self-incompatibility) locus in angiosperms.


Assuntos
Ascomicetos/genética , Proteínas Fúngicas/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA , Evolução Molecular , Dados de Sequência Molecular , Polimorfismo Genético , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
9.
Gene ; 213(1-2): 17-22, 1998 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-9630484

RESUMO

A library made up of 36bp DNA fragments generated by digestion of human DNA with the restriction endonuclease Bcg I has been constructed. It contains 2.5x106 independent clones, representing several times the total human genome which should contain about 400000 such fragments. It is proposed to make use of these BcgI fragments to clone part of the coding sequences contained in the minor H3 isochore which represents 3% of the human genomic DNA and a quarter of all genes.


Assuntos
DNA Recombinante , Desoxirribonucleases de Sítio Específico do Tipo II , Biblioteca Gênica , Genoma Humano , Clonagem Molecular , Ilhas de CpG , DNA Complementar/genética , Humanos , Plasmídeos , Especificidade por Substrato
10.
Proc Natl Acad Sci U S A ; 94(18): 9773-8, 1997 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-9275200

RESUMO

The het-s locus of Podospora anserina is a heterokaryon incompatibility locus. The coexpression of the antagonistic het-s and het-S alleles triggers a lethal reaction that prevents the formation of viable heterokaryons. Strains that contain the het-s allele can display two different phenotypes, [Het-s] or [Het-s*], according to their reactivity in incompatibility. The detection in these phenotypically distinct strains of a protein expressed from the het-s gene indicates that the difference in reactivity depends on a posttranslational difference between two forms of the polypeptide encoded by the het-s gene. This posttranslational modification does not affect the electrophoretic mobility of the protein in SDS/PAGE. Several results suggest a similarity of behavior between the protein encoded by the het-s gene and prions. The [Het-s] character can propagate in [Het-s*] strains as an infectious agent, producing a [Het-s*] --> [Het-s] transition, independently of protein synthesis. Expression of the [Het-s] character requires a functional het-s gene. The protein present in [Het-s] strains is more resistant to proteinase K than that present in [Het-s*] mycelium. Furthermore, overexpression of the het-s gene increases the frequency of the transition from [Het-s*] to [Het-s]. We propose that this transition is the consequence of a self-propagating conformational modification of the protein mediated by the formation of complexes between the two different forms of the polypeptide.


Assuntos
Ascomicetos/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Príons/genética , Proteínas Fúngicas/metabolismo , Processamento de Proteína Pós-Traducional/genética
11.
Genetics ; 146(4): 1299-309, 1997 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9258675

RESUMO

In filamentous fungi, the ability to form a productive heterokaryon with a genetically dissimilar individual is controlled by specific loci termed het loci. Only strains homozygous for all het loci can establish a heterokaryon. In Neurospora crassa, 11 loci, including the mating-type locus, regulate the capacity to form heterokaryons. An allele of the het-c locus (het-cOR) of N. crassa has been previously characterized and encodes a nonessential 966 amino acid glycine-rich protein. Herein, we describe the genetic and molecular characterization of two hei-c alleles, het-cPA and het-cOR, that have a different specificity from that of het-cOR, showing that vegetative incompatibility is mediated by multiple alleles at het-c. By constructing chimeric alleles, we show that het-c specificity is determined by a highly variable domain of 34-48 amino acids in length. In this regard, het-c is similar to loci that regulate recognition in other species, such as the (S) self-incompatibility locus in plants, the sexual compatibility locus in basidiomycetes and the major histocompatibility complex (MHC) genes in vertebrates.


Assuntos
Alelos , Genes Fúngicos , Genes Fúngicos Tipo Acasalamento , Neurospora crassa/genética , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA/genética , DNA Fúngico/genética , Proteínas Fúngicas/genética , Variação Genética , Dados de Sequência Molecular , Neurospora crassa/isolamento & purificação , Reação em Cadeia da Polimerase , Homologia de Sequência de Aminoácidos , Transformação Genética
12.
Genetics ; 143(4): 1589-600, 1996 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-8844148

RESUMO

Filamentous fungi are capable of hyphal fusion, but heterokaryon formation between different isolates is controlled by specific loci termed het loci. Heterokaryotic cells formed between strains of different het genotype are rapidly destroyed or strongly inhibited in their growth. In Neurospora crassa, at least 11 loci, including the mating type locus, affect the capacity to form a heterokaryon between different isolates. In this report, we describe the molecular characterization of the vegetative incompatibility locus, het-C. The het-COR allele was cloned by genetically identifying the het-C locus in a chromosome walk, and the activity of clones containing the het-COR allele was tested in a functional transformation assay. The het-COR allele encodes a 966-amino acid polypeptide with a putative signal peptide, a coiled-coil motif and a C-terminal glycine-rich domain, similar to glycine-rich domains detected in various extracellular and structural cell envelope proteins. Both the coiled-coil and one-third of the glycine-rich carboxyl terminal domains were required for full het-COR activity. Mutants of het-COR were obtained by repeat-induced point mutation (RIP); these mutants were indistinguishable from wild type during vegetative growth and sexual reproduction but displayed dual compatibility with both of two mutually incompatible het-COR and het-cPA strains.


Assuntos
Proteínas Fúngicas/genética , Genes Fúngicos , Genes Fúngicos Tipo Acasalamento , Neurospora crassa/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Parede Celular/química , Mapeamento Cromossômico , Clonagem Molecular , Primers do DNA/genética , DNA Fúngico/genética , Proteínas Fúngicas/química , Glicina/análise , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Estrutura Molecular , Mutação , Neurospora crassa/química , Sinais Direcionadores de Proteínas/química , Sinais Direcionadores de Proteínas/genética , Recombinação Genética , Transformação Genética
13.
Mol Gen Genet ; 250(6): 767-74, 1996 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-8628238

RESUMO

In Neurospora crassa, mating and heterokaryon formation between opposite mating-types is controlled by a single locus with two alternate forms termed mt A and mt a. Previously, an open reading frame (mt A-1) that confers mating identity and heterokaryon incompatibility was characterized in the 5.3 kb mt A idiomorph. In this study, we describe the structural and transcriptional characterization of two additional genes in the mt A idiomorph, Mt A-2 and mt A-3. The 373 amino acid mt A-2 ORF has 23% identity to the SMR1 ORF of Podospora anserina. DNA sequence analysis of a mutation affecting ascospore to 129 amino acids. The 324 amino acids mt A-3 ORF has an HMG domain and shows 22% amino acid identity to SMR2 of P. anserina. Transcripts from mt A-2 and mt A-3 are constitutively expressed during both vegetative and sexual reproduction. The presence of upstream ORFs in the mt A-2 and mt A-3 transcripts suggests the possibility of post-transcriptional regulation of the expression mt A-2 and mt A-3 polypeptides.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Genes Fúngicos/genética , Neurospora crassa/genética , Sequência de Aminoácidos , Sequência de Bases , Northern Blotting , Mapeamento Cromossômico , Clonagem Molecular , Sequência Consenso/genética , Proteínas de Ligação a DNA/química , Proteínas Fúngicas/química , Regulação Fúngica da Expressão Gênica/genética , Dados de Sequência Molecular , Neurospora crassa/química , Fases de Leitura Aberta , Reação em Cadeia da Polimerase , Alinhamento de Sequência , Análise de Sequência , Transcrição Gênica/genética
14.
Mol Gen Genet ; 250(1): 115-22, 1996 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-8569681

RESUMO

The 293-amino acid mt A-1 ORF of the A mating-type idiomorph of Neurospora crassa is multifunctional. It confers A mating identity and is responsible for heterokaryon incompatibility. The goal of this study was to dissect the functional regions of mt A-1. New mutants of mt A-1 selected for loss of the incompatibility function were obtained. One new mutant, A(m)99, was partially fertile as a maternal parent. This is the first time that fertility and incompatibility functions have been separated for the A idiomorph. In this mutant, the mt A-1 ORF is truncated after the first 85 amino acids, indicating that this N-terminal region is minimally sufficient for female fertility. A series of deletion constructs and frameshift alleles of mt A-1 was obtained and tested for male-mating activity and vegetative incompatibility in transformation experiments. These experiments showed that a region from position 1 to 111 is sufficient to confer incompatibility, while amino acids from position 1 to 227 are required for mating activity. A transcriptional analysis of mt A-1 showed that the mRNA is expressed both before and after fertilization. This, together with the phenotype of the A(m)99 mutant, suggests a post-fertilization function for mt A-1.


Assuntos
Proteínas Fúngicas/genética , Genes Fúngicos , Genes Fúngicos Tipo Acasalamento , Neurospora crassa/genética , Alelos , Sequência de Aminoácidos , Deleção de Genes , Dados de Sequência Molecular , Mutação , Fases de Leitura Aberta , Transcrição Gênica , Transformação Genética
15.
Gene ; 162(1): 135-9, 1995 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-7557402

RESUMO

The het-e-1 gene of the fungus Podospora anserina is responsible for vegetative incompatibility through specific interactions with different alleles of the unlinked gene, het-c. Coexpression of two incompatible genes triggers a cell death reaction that prevents heterokaryon formation. The het-e1 allele has been cloned to get information on the function of the locus. It encodes a putative 1356-amino-acid polypeptide that displays two sequence motifs that have not yet been reported to be present on a single polypeptide. They are a GTP-binding domain and a repeated region that shares similarity with that of the beta-transducin. Contrary to other members of the beta-transducin family, sequence conservation between the repeated units is very strong and the number of repeats is different in wild-type het-e alleles.


Assuntos
Ascomicetos/genética , Proteínas Fúngicas/genética , Proteínas de Ligação ao GTP , Genes Fúngicos , Transducina/análogos & derivados , Alelos , Sequência de Aminoácidos , Ascomicetos/crescimento & desenvolvimento , Biblioteca Genômica , Dados de Sequência Molecular , Sequências Repetitivas de Ácido Nucleico , Reprodução/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Transducina/genética
16.
Curr Genet ; 27(5): 466-71, 1995 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-7586034

RESUMO

The het-c locus of the filamentous fungus Podospora anserina controls heterokaryon formation through genetic interaction with alleles of the unlinked loci het-e and het-d. We have isolated four wild-type and two mutant alleles of the het-c locus. A comparison of the predicted proteins encoded by the different wild-type alleles revealed an unusual high level of amino-acid replacements compared to silent polymorphisms but only one amino-acid difference is sufficient to modify the specificity of het-c alleles. Chimeric genes constructed in vitro may exhibit a new specificity different from that of any known wild-type allele.


Assuntos
Ascomicetos/genética , Proteínas Fúngicas/genética , Variação Genética , Alelos , Sequência de Aminoácidos , Aminoácidos/genética , Ascomicetos/fisiologia , Sequência de Bases , Quimera , Clonagem Molecular , Proteínas Fúngicas/química , Regulação Fúngica da Expressão Gênica , Dados de Sequência Molecular , Mutação , Polimorfismo Genético , RNA Mensageiro , Recombinação Genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
17.
Proc Natl Acad Sci U S A ; 91(13): 5927-31, 1994 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-8016091

RESUMO

The het-c locus contains different alleles that elicit nonallelic vegetative incompatibility through specific interactions with alleles of the unlinked loci het-e and het-d. The het-c2 allele has been cloned. It encodes a 208-amino acid polypeptide that is similar to a glycolipid transfer protein purified from pig brain. Disruption of this gene drastically impairs ascospore production in homozygous crosses, and some mutants exhibit abnormal branching of apical hyphae. The protein encoded by het-c2 is essential in the biology of the fungus and may be involved in cell-wall biosynthesis.


Assuntos
Ascomicetos/genética , Proteínas de Transporte/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Alelos , Sequência de Aminoácidos , Ascomicetos/fisiologia , Sequência de Bases , Proteínas de Transporte/biossíntese , Cruzamentos Genéticos , Primers do DNA , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/isolamento & purificação , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Homologia de Sequência de Aminoácidos , Esporos Fúngicos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...