Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298114

RESUMO

A phyloprofile of Frankia genomes was carried out to identify those genes present in symbiotic strains of clusters 1, 1c, 2 and 3 and absent in non-infective strains of cluster 4. At a threshold of 50% AA identity, 108 genes were retrieved. Among these were known symbiosis-associated genes such as nif (nitrogenase), and genes which are not know as symbiosis-associated genes such as can (carbonic anhydrase, CAN). The role of CAN, which supplies carbonate ions necessary for carboxylases and acidifies the cytoplasm, was thus analyzed by staining cells with pH-responsive dyes; assaying for CO2 levels in N-fixing propionate-fed cells (that require a propionate-CoA carboxylase to yield succinate-CoA), fumarate-fed cells and N-replete propionate-fed cells; conducting proteomics on N-fixing fumarate and propionate-fed cells and direct measurement of organic acids in nodules and in roots. The interiors of both in vitro and nodular vesicles were found to be at a lower pH than that of hyphae. CO2 levels in N2-fixing propionate-fed cultures were lower than in N-replete ones. Proteomics of propionate-fed cells showed carbamoyl-phosphate synthase (CPS) as the most overabundant enzyme relative to fumarate-fed cells. CPS combines carbonate and ammonium in the first step of the citrulline pathway, something which would help manage acidity and NH4+. Nodules were found to have sizeable amounts of pyruvate and acetate in addition to TCA intermediates. This points to CAN reducing the vesicles' pH to prevent the escape of NH3 and to control ammonium assimilation by GS and GOGAT, two enzymes that work in different ways in vesicles and hyphae. Genes with related functions (carboxylases, biotin operon and citrulline-aspartate ligase) appear to have undergone decay in non-symbiotic lineages.


Assuntos
Compostos de Amônio , Anidrases Carbônicas , Frankia , Nitrogênio/metabolismo , Frankia/fisiologia , Fixação de Nitrogênio/genética , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Citrulina/metabolismo , Dióxido de Carbono/metabolismo , Propionatos/metabolismo , Citoplasma/metabolismo , Compostos de Amônio/metabolismo , Concentração de Íons de Hidrogênio , Simbiose
2.
Molecules ; 27(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36296396

RESUMO

Saffron is a very high value-added ingredient used in the food supplement market and contains a high level of safranal. Adding synthetic safranal to saffron, which is significantly cheaper, and falsifying the origin of saffron may represent recurrent fraud. Saffron from different countries was analyzed to determine the stable isotope ratios δ13C and δ2H from safranal by gas chromatography coupled with isotope-ratio mass spectrometry (GC-C/P-IRMS) and the concentration of saffron metabolites with ultra-high performance liquid chromatography coupled with diode array detector (UHPLC-DAD). The isotopic analysis highlighted a higher ratio of δ2H in synthetic safranal than in natural safranal; the mean values were 36‱ (+/- 40) and -210‱ (+/- 35), respectively. The δ13C between Iranian, Spanish and other saffron was significantly different and represents median values of -28.62‱, -30.12‱ and -30.70‱, respectively. Moreover, linear and quadratic discriminant analyses (LDA and QDA) were computed using the two isotope ratios of safranal and the saffron metabolites. A first QDA showed that trans-crocetin and the δ13C of safranal, picrocrocin, and crocin C3 concentrations clearly differentiated Iranian saffron from other origins. A second model identified δ13C, trans-crocetin, crocin C2, crocin C3, and picrocrocin as good predictors to discriminate saffron samples from Iran, Spain, or other origins, with a total ability score classification matrix of 100% and a prediction matrix of 82.5%. This combined approach may be a useful tool to authenticate the origin of unknown saffron.


Assuntos
Crocus , Crocus/química , Irã (Geográfico) , Extratos Vegetais/química , Cicloexenos/análise , Terpenos/análise , Isótopos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...