Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(23): 5071-5084.e7, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37977140

RESUMO

Cell walls are important interfaces of plant-fungal interactions, acting as robust physical and chemical barriers against invaders. Upon fungal colonization, plants deposit phenolics and callose at the sites of fungal penetration to prevent further fungal progression. Alterations in the composition of plant cell walls significantly impact host susceptibility. Furthermore, plants and fungi secrete glycan hydrolases acting on each other's cell walls. These enzymes release various sugar oligomers into the apoplast, some of which activate host immunity via surface receptors. Recent characterization of cell walls from plant-colonizing fungi has emphasized the abundance of ß-glucans in different cell wall layers, which makes them suitable targets for recognition. To characterize host components involved in immunity against fungi, we performed a protein pull-down with the biotinylated ß-glucan laminarin. Thereby, we identified a plant glycoside hydrolase family 81-type glucan-binding protein (GBP) as a ß-glucan interactor. Mutation of GBP1 and its only paralog, GBP2, in barley led to decreased colonization by the beneficial root endophytes Serendipita indica and S. vermifera, as well as the arbuscular mycorrhizal fungus Rhizophagus irregularis. The reduction of colonization was accompanied by enhanced responses at the host cell wall, including an extension of callose-containing cell wall appositions. Moreover, GBP mutation in barley also reduced fungal biomass in roots by the hemibiotrophic pathogen Bipolaris sorokiniana and inhibited the penetration success of the obligate biotrophic leaf pathogen Blumeria hordei. These results indicate that GBP1 is involved in the establishment of symbiotic associations with beneficial fungi-a role that has potentially been appropriated by barley-adapted pathogens.


Assuntos
Hordeum , Micorrizas , beta-Glucanas , Hordeum/metabolismo , Simbiose/fisiologia , Fungos , Micorrizas/fisiologia , Plantas , beta-Glucanas/metabolismo , Raízes de Plantas/metabolismo
2.
J Exp Bot ; 74(18): 5854-5869, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37474129

RESUMO

Nucleotide-binding leucine-rich repeat receptors (NLRs) recognize pathogen effectors to mediate plant disease resistance often involving host cell death. Effectors escape NLR recognition through polymorphisms, allowing the pathogen to proliferate on previously resistant host plants. The powdery mildew effector AVRA13-1 is recognized by the barley NLR MLA13 and activates host cell death. We demonstrate here that a virulent form of AVRA13, called AVRA13-V2, escapes MLA13 recognition by substituting a serine for a leucine residue at the C-terminus. Counterintuitively, this substitution in AVRA13-V2 resulted in an enhanced MLA13 association and prevented the detection of AVRA13-1 by MLA13. Therefore, AVRA13-V2 is a dominant-negative form of AVRA13 and has probably contributed to the breakdown of Mla13 resistance. Despite this dominant-negative activity, AVRA13-V2 failed to suppress host cell death mediated by the MLA13 autoactive MHD variant. Neither AVRA13-1 nor AVRA13-V2 interacted with the MLA13 autoactive variant, implying that the binding moiety in MLA13 that mediates association with AVRA13-1 is altered after receptor activation. We also show that mutations in the MLA13 coiled-coil domain, which were thought to impair Ca2+ channel activity and NLR function, instead resulted in MLA13 autoactive cell death. Our results constitute an important step to define intermediate receptor conformations during NLR activation.


Assuntos
Ascomicetos , Hordeum , Hordeum/metabolismo , Leucina , Resistência à Doença , Morte Celular , Proteínas de Transporte/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo
3.
J Exp Bot ; 74(15): 4736-4750, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37225161

RESUMO

Plant pathogens secrete effectors, which target host proteins to facilitate infection. The Ustilago maydis effector UmSee1 is required for tumor formation in the leaf during infection of maize. UmSee1 interacts with maize SGT1 (suppressor of G2 allele of skp1) and blocks its phosphorylation in vivo. In the absence of UmSee1, U. maydis cannot trigger tumor formation in the bundle sheath. However, it remains unclear which host processes are manipulated by UmSee1 and the UmSee1-SGT1 interaction to cause the observed phenotype. Proximity-dependent protein labeling involving the turbo biotin ligase tag (TurboID) for proximal labeling of proteins is a powerful tool for identifying the protein interactome. We have generated transgenic U. maydis that secretes biotin ligase-fused See1 effector (UmSee1-TurboID-3HA) directly into maize cells. This approach, in combination with conventional co-immunoprecipitation, allowed the identification of additional UmSee1 interactors in maize cells. Collectively, our data identified three ubiquitin-proteasome pathway-related proteins (ZmSIP1, ZmSIP2, and ZmSIP3) that either interact with or are close to UmSee1 during host infection of maize with U. maydis. ZmSIP3 represents a cell cycle regulator whose degradation appears to be promoted in the presence of UmSee1. Our data provide a possible explanation of the requirement for UmSee1 in tumor formation during U. maydis-Zea mays interaction.


Assuntos
Neoplasias , Ustilago , Doenças das Plantas/microbiologia , Zea mays/metabolismo , Ustilago/genética , Ustilago/metabolismo , Biotina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ligases/metabolismo
4.
Nat Genet ; 55(6): 921-926, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37217714

RESUMO

To safeguard bread wheat against pests and diseases, breeders have introduced over 200 resistance genes into its genome, thus nearly doubling the number of designated resistance genes in the wheat gene pool1. Isolating these genes facilitates their fast-tracking in breeding programs and incorporation into polygene stacks for more durable resistance. We cloned the stem rust resistance gene Sr43, which was crossed into bread wheat from the wild grass Thinopyrum elongatum2,3. Sr43 encodes an active protein kinase fused to two domains of unknown function. The gene, which is unique to the Triticeae, appears to have arisen through a gene fusion event 6.7 to 11.6 million years ago. Transgenic expression of Sr43 in wheat conferred high levels of resistance to a wide range of isolates of the pathogen causing stem rust, highlighting the potential value of Sr43 in resistance breeding and engineering.


Assuntos
Basidiomycota , Resistência à Doença , Resistência à Doença/genética , Doenças das Plantas/genética , Melhoramento Vegetal , Genes de Plantas , Basidiomycota/genética
5.
Essays Biochem ; 66(5): 551-560, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35612398

RESUMO

Plant resistance (R) genes are members of large gene families with significant within and between species variation. It has been hypothesised that a variety of processes have shaped R gene evolution and the evolution of R gene specificity. In this review, we illustrate the main mechanisms that generate R gene diversity and provide examples of how they can change R gene specificity. Next, we explain which evolutionary mechanisms are at play and how they determine the fate of new R gene alleles and R genes. Finally, we place this in a larger context by comparing the diversity and evolution of R gene specificity within and between species scales.


Assuntos
Genes vpr , Plantas , Evolução Molecular , Plantas/genética
6.
Nat Plants ; 8(2): 100-101, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35105950
7.
New Phytol ; 234(2): 592-606, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35107838

RESUMO

Pathogen effectors are crucial players during plant colonisation and infection. Plant resistance mostly relies on effector recognition to activate defence responses. Understanding how effector proteins escape from plant surveillance is important for plant breeding and resistance deployment. Here we examined the role of genetic diversity of the stem rust (Puccinia graminis f. sp. tritici (Pgt)) AvrSr50 gene in determining recognition by the corresponding wheat Sr50 resistance gene. We solved the crystal structure of a natural variant of AvrSr50 and used site-directed mutagenesis and transient expression assays to dissect the molecular mechanisms explaining gain of virulence. We report that AvrSr50 can escape recognition by Sr50 through different mechanisms including DNA insertion, stop codon loss or by amino-acid variation involving a single substitution of the AvrSr50 surface-exposed residue Q121. We also report structural homology of AvrSr50 to cupin superfamily members and carbohydrate-binding modules indicating a potential role in binding sugar moieties. This study identifies key polymorphic sites present in AvrSr50 alleles from natural stem rust populations that play important roles to escape from Sr50 recognition. This constitutes an important step to better understand Pgt effector evolution and to monitor AvrSr50 variants in natural rust populations.


Assuntos
Basidiomycota , Resistência à Doença , Basidiomycota/fisiologia , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
8.
PLoS Pathog ; 17(2): e1009223, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33534797

RESUMO

Nucleotide-binding domain leucine-rich repeat-containing receptors (NLRs) in plants can detect avirulence (AVR) effectors of pathogenic microbes. The Mildew locus a (Mla) NLR gene has been shown to confer resistance against diverse fungal pathogens in cereal crops. In barley, Mla has undergone allelic diversification in the host population and confers isolate-specific immunity against the powdery mildew-causing fungal pathogen Blumeria graminis forma specialis hordei (Bgh). We previously isolated the Bgh effectors AVRA1, AVRA7, AVRA9, AVRA13, and allelic AVRA10/AVRA22, which are recognized by matching MLA1, MLA7, MLA9, MLA13, MLA10 and MLA22, respectively. Here, we extend our knowledge of the Bgh effector repertoire by isolating the AVRA6 effector, which belongs to the family of catalytically inactive RNase-Like Proteins expressed in Haustoria (RALPHs). Using structural prediction, we also identified RNase-like folds in AVRA1, AVRA7, AVRA10/AVRA22, and AVRA13, suggesting that allelic MLA recognition specificities could detect structurally related avirulence effectors. To better understand the mechanism underlying the recognition of effectors by MLAs, we deployed chimeric MLA1 and MLA6, as well as chimeric MLA10 and MLA22 receptors in plant co-expression assays, which showed that the recognition specificity for AVRA1 and AVRA6 as well as allelic AVRA10 and AVRA22 is largely determined by the receptors' C-terminal leucine-rich repeats (LRRs). The design of avirulence effector hybrids allowed us to identify four specific AVRA10 and five specific AVRA22 aa residues that are necessary to confer MLA10- and MLA22-specific recognition, respectively. This suggests that the MLA LRR mediates isolate-specific recognition of structurally related AVRA effectors. Thus, functional diversification of multi-allelic MLA receptors may be driven by a common structural effector scaffold, which could be facilitated by proliferation of the RALPH effector family in the pathogen genome.


Assuntos
Ascomicetos/fisiologia , Hordeum/genética , Leucina/química , Doenças das Plantas/genética , Proteínas de Plantas/genética , Receptores Imunológicos/genética , Ribonucleases/química , Alelos , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Variação Genética , Hordeum/imunologia , Hordeum/microbiologia , Imunidade Inata , Leucina/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Receptores Imunológicos/metabolismo , Ribonucleases/metabolismo , Homologia de Sequência
9.
J Plant Physiol ; 256: 153324, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33249386

RESUMO

Attempted infections of plants with fungi result in diverse outcomes ranging from symptom-less resistance to severe disease and even death of infected plants. The deleterious effect on crop yield have led to intense focus on the cellular and molecular mechanisms that explain the difference between resistance and susceptibility. This research has uncovered plant resistance or susceptibility genes that explain either dominant or recessive inheritance of plant resistance with many of them coding for receptors that recognize pathogen invasion. Approaches based on cell biology and phytochemistry have contributed to identifying factors that halt an invading fungal pathogen from further invasion into or between plant cells. Plant chemical defence compounds, antifungal proteins and structural reinforcement of cell walls appear to slow down fungal growth or even prevent fungal penetration in resistant plants. Additionally, the hypersensitive response, in which a few cells undergo a strong local immune reaction, including programmed cell death at the site of infection, stops in particular biotrophic fungi from spreading into surrounding tissue. In this review, we give a general overview of plant recognition and defence of fungal parasites tracing back to the early 20th century with a special focus on Triticeae and on the progress that was made in the last 30 years.


Assuntos
Resistência à Doença/genética , Resistência à Doença/fisiologia , Fungos/patogenicidade , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Poaceae/genética , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Virulência/genética
10.
Nat Rev Immunol ; 21(5): 305-318, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33293618

RESUMO

Animal and plant immune systems use intracellular nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) to detect pathogens, resulting in the activation of immune responses that are often associated with localized host cell death. Whereas vertebrate NLRs detect evolutionarily conserved molecular patterns and have undergone comparatively little copy number expansion, plant NLRs detect virulence factors that have often diversified in plant pathogen populations, and thus plant NLRs have been subject to parallel diversification. Plant NLRs sense the presence of virulence factors with enzymatic virulence activity often indirectly through their modification of host target proteins. By contrast, phytopathogenic virulence factors without enzymatic activity are usually recognized by NLRs directly by their structure. Structural and biochemical analyses have shown that both indirect and direct recognition of plant pathogens trigger the oligomerization of plant NLRs into active complexes. Assembly into three-layered ring-like structures has emerged as a common principle of NLR activation in plants and animals, but with distinct amino-terminal domains initiating different signalling pathways. Collectively, these analyses point to host cell membranes as a convergence point for activated plant NLRs and the disruption of cellular ion homeostasis as a possible major factor in NLR-triggered cell death signalling.


Assuntos
Morte Celular/imunologia , Proteínas NLR/imunologia , Imunidade Vegetal , Proteínas de Plantas/imunologia , Animais , Evolução Biológica , Interações entre Hospedeiro e Microrganismos/imunologia , Modelos Imunológicos , Modelos Moleculares , Proteínas NLR/química , Células Vegetais/imunologia , Proteínas de Plantas/química , Plantas/microbiologia , Transdução de Sinais/imunologia
11.
Cell Host Microbe ; 28(6): 813-824.e6, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33053377

RESUMO

HeLo domain-containing mixed lineage kinase domain-like protein (MLKL), a pseudokinase, mediates necroptotic cell death in animals. Here, we report the discovery of a conserved protein family across seed plants that structurally resembles vertebrate MLKL. The Arabidopsis genome encodes three MLKLs (AtMLKLs) with overlapping functions in disease resistance mediated by Toll-interleukin 1-receptor domain intracellular immune receptors (TNLs). The HeLo domain of AtMLKLs confers cell death activity but is dispensable for immunity. Cryo-EM structures reveal a tetrameric configuration, in which the HeLo domain is buried, suggestive of an auto-repressed complex. The mobility of AtMLKL1 along microtubules is reduced by chitin, a fungal immunity-triggering molecule. An AtMLKL1 phosphomimetic variant exhibiting reduced mobility enhances immunity. Coupled with the predicted presence of HeLo domains in plant helper NLRs, our data reveal the importance of HeLo domain proteins for TNL-dependent immunity and argue for a cell death-independent immune mechanism mediated by MLKLs.


Assuntos
Arabidopsis/fisiologia , Resistência à Doença , Proteínas NLR/fisiologia , Imunidade Vegetal , Domínios Proteicos , Proteínas Quinases/fisiologia , ADP-Ribosil Ciclase/fisiologia , Sequência de Aminoácidos , Animais , Apoptose , Proteínas de Arabidopsis/fisiologia , Morte Celular , Microscopia Crioeletrônica , Genoma de Planta , Mutação , Necroptose , Necrose , Proteínas de Plantas/fisiologia , Conformação Proteica , Multimerização Proteica , Transdução de Sinais
12.
Plant Methods ; 15: 118, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31666804

RESUMO

BACKGROUND: Plant disease resistance to host-adapted pathogens is often mediated by host nucleotide-binding and leucine-rich repeat (NLR) receptors that detect matching pathogen avirulence effectors (AVR) inside plant cells. AVR-triggered NLR activation is typically associated with a rapid host cell death at sites of attempted infection and this response constitutes a widely used surrogate for NLR activation. However, it is challenging to assess this cell death in cereal hosts. RESULTS: Here we quantify cell death upon NLR-mediated recognition of fungal pathogen AVRs in mesophyll leaf protoplasts of barley and wheat. We provide measurements for the recognition of the fungal AVRs AvrSr50 and AVR a1 by their respective cereal NLRs Sr50 and Mla1 upon overexpression of the AVR and NLR pairs in mesophyll protoplast of both, wheat and barley. CONCLUSIONS: Our data demonstrate that the here described approach can be effectively used to detect and quantify death of wheat and barley cells induced by overexpression of NLR and AVR effectors or AVR effector candidate genes from diverse fungal pathogens within 24 h.

13.
Mol Plant Microbe Interact ; 32(1): 107-119, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30295580

RESUMO

The barley disease resistance (R) gene locus mildew locus A (Mla) provides isolate-specific resistance against the powdery mildew fungus Blumeria graminis hordei and has been introgressed into modern cultivars from diverse germplasms, including the wild relative Hordeum spontaneum. Known Mla disease resistance specificities to B. graminis hordei appear to encode allelic variants of the R gene homolog 1 (RGH1) family of nucleotide-binding domain and leucine-rich repeat (NLR) proteins. Here, we sequenced and assembled the transcriptomes of 50 H. spontaneum accessions representing nine populations distributed throughout the Fertile Crescent. The assembled Mla transcripts exhibited rich sequence diversity, linked neither to geographic origin nor population structure, and could be grouped into two similar-sized subfamilies based on two major N-terminal coiled-coil (CC) signaling domains that are both capable of eliciting cell death. The presence of positively selected sites located mainly in the C-terminal leucine-rich repeats of both MLA subfamilies, together with the fact that both CC signaling domains mediate cell death, implies that the two subfamilies are actively maintained in the population. Unexpectedly, known MLA receptor variants that confer B. graminis hordei resistance belong exclusively to one subfamily. Thus, signaling domain divergence, potentially as adaptation to distinct pathogen populations, is an evolutionary signature of functional diversification of an immune receptor. Copyright © 2018 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


Assuntos
Ascomicetos , Resistência à Doença , Hordeum , Ascomicetos/fisiologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Hordeum/imunologia , Hordeum/microbiologia , Proteínas de Plantas/imunologia
14.
Mol Plant Pathol ; 18(6): 811-824, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27291634

RESUMO

In this article, we describe the presence of genes encoding close homologues of an endogenous plant peptide, rapid alkalinization factor (RALF), within the genomes of 26 species of phytopathogenic fungi. Members of the RALF family are key growth factors in plants, and the sequence of the RALF active region is well conserved between plant and fungal proteins. RALF1-like sequences were observed in most cases; however, RALF27-like sequences were present in the Sphaerulina musiva and Septoria populicola genomes. These two species are pathogens of poplar and, interestingly, the closest relative to their respective RALF genes is a poplar RALF27-like sequence. RALF peptides control cellular expansion during plant development, but were originally defined on the basis of their ability to induce rapid alkalinization in tobacco cell cultures. To test whether the fungal RALF peptides were biologically active in plants, we synthesized RALF peptides corresponding to those encoded by two sequenced genomes of the tomato pathogen Fusarium oxysporum f. sp. lycopersici. One of these peptides inhibited the growth of tomato seedlings and elicited responses in tomato and Nicotiana benthamiana typical of endogenous plant RALF peptides (reactive oxygen species burst, induced alkalinization and mitogen-activated protein kinase activation). Gene expression analysis confirmed that a RALF-encoding gene in F. oxysporum f. sp. lycopersici was expressed during infection on tomato. However, a subsequent reverse genetics approach revealed that the RALF peptide was not required by F. oxysporum f. sp. lycopersici for infection on tomato roots. This study has demonstrated the presence of functionally active RALF peptides encoded within phytopathogens that harbour an as yet undetermined role in plant-pathogen interactions.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Fusarium/patogenicidade , Hormônios Peptídicos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Fúngicas/genética , Fusarium/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Hormônios Peptídicos/genética , Proteínas de Plantas/genética , Plântula/genética , Plântula/metabolismo , Plântula/microbiologia , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiologia
15.
Proc Natl Acad Sci U S A ; 113(42): E6486-E6495, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27702901

RESUMO

Disease-resistance genes encoding intracellular nucleotide-binding domain and leucine-rich repeat proteins (NLRs) are key components of the plant innate immune system and typically detect the presence of isolate-specific avirulence (AVR) effectors from pathogens. NLR genes define the fastest-evolving gene family of flowering plants and are often arranged in gene clusters containing multiple paralogs, contributing to copy number and allele-specific NLR variation within a host species. Barley mildew resistance locus a (Mla) has been subject to extensive functional diversification, resulting in allelic resistance specificities each recognizing a cognate, but largely unidentified, AVRa gene of the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). We applied a transcriptome-wide association study among 17 Bgh isolates containing different AVRa genes and identified AVRa1 and AVRa13, encoding candidate-secreted effectors recognized by Mla1 and Mla13 alleles, respectively. Transient expression of the effector genes in barley leaves or protoplasts was sufficient to trigger Mla1 or Mla13 allele-specific cell death, a hallmark of NLR receptor-mediated immunity. AVRa1 and AVRa13 are phylogenetically unrelated, demonstrating that certain allelic MLA receptors evolved to recognize sequence-unrelated effectors. They are ancient effectors because corresponding loci are present in wheat powdery mildew. AVRA1 recognition by barley MLA1 is retained in transgenic Arabidopsis, indicating that AVRA1 directly binds MLA1 or that its recognition involves an evolutionarily conserved host target of AVRA1 Furthermore, analysis of transcriptome-wide sequence variation among the Bgh isolates provides evidence for Bgh population structure that is partially linked to geographic isolation.


Assuntos
Alelos , Ascomicetos/genética , Ascomicetos/imunologia , Hordeum/imunologia , Hordeum/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Arabidopsis/genética , Ascomicetos/patogenicidade , Sequência de Bases , Morte Celular , Resistência à Doença/imunologia , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Estudos de Associação Genética , Genoma Fúngico , Genótipo , Interações Hospedeiro-Patógeno/imunologia , Fenótipo , Células Vegetais , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único , Receptores Imunológicos/genética , Transcriptoma , Fatores de Virulência/química , Fatores de Virulência/genética
16.
Proc Natl Acad Sci U S A ; 113(12): 3389-94, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26944079

RESUMO

Plants use receptor kinases (RKs) and receptor-like proteins (RLPs) as pattern recognition receptors (PRRs) to sense pathogen-associated molecular patterns (PAMPs) that are typical of whole classes of microbes. After ligand perception, many leucine-rich repeat (LRR)-containing PRRs interact with the LRR-RK BRI1-ASSOCIATED KINASE 1 (BAK1). BAK1 is thus expected to interact with unknown PRRs. Here, we used BAK1 as molecular bait to identify a previously unknown LRR-RLP required for the recognition of the csp22 peptide derived from bacterial cold shock protein. We established a method to identify proteins that interact with BAK1 only after csp22 treatment. BAK1 was expressed transiently in Nicotiana benthamiana and immunopurified after treatment with csp22. BAK1-associated proteins were identified by mass spectrometry. We identified several proteins including known BAK1 interactors and a previously uncharacterized LRR-RLP that we termed RECEPTOR-LIKE PROTEIN REQUIRED FOR CSP22 RESPONSIVENESS (NbCSPR). This RLP associates with BAK1 upon csp22 treatment, and NbCSPR-silenced plants are impaired in csp22-induced defense responses. NbCSPR confers resistance to bacteria in an age-dependent and flagellin-induced manner. As such, it limits bacterial growth and Agrobacterium-mediated transformation of flowering N. benthamiana plants. Transgenic expression of NbCSPR into Arabidopsis thaliana conferred responsiveness to csp22 and antibacterial resistance. Our method may be used to identify LRR-type RKs and RLPs required for PAMP perception/responsiveness, even when the active purified PAMP has not been defined.


Assuntos
Proteínas de Bactérias/imunologia , Proteínas e Peptídeos de Choque Frio/fisiologia , Nicotiana/imunologia , Nicotiana/microbiologia
17.
Curr Opin Plant Biol ; 20: 69-74, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24845576

RESUMO

One important model for disease resistance is the Prf recognition complex of tomato, which responds to different bacterial effectors. Prf incorporates a protein kinase called Pto as its recognition domain that mimics effector virulence targets, and activates resistance after interaction with specific effectors. Recent findings show that this complex is oligomeric, and reveal how this impacts mechanism. Oligomerisation brings two or more kinases into proximity, where they can phosphorylate each other after effector perception. Effector attack on one kinase activates another in trans, constituting a molecular trap for the effector. Oligomerisation of plant resistance proteins may be a general concept that broadens pathogen recognition and restricts the ability of pathogens to evolve virulence.


Assuntos
Imunidade Vegetal , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Solanum lycopersicum/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
18.
New Phytol ; 190(4): 865-874, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21507004

RESUMO

A subset of CLAVATA3/endosperm-surrounding region-related (CLE) peptides are involved in autoregulation of nodulation (AON) in Medicago truncatula (e.g. MtCLE12 and MtCLE13). However, their linkage to other components of the AON pathways downstream of the shoot-derived inhibitor (SDI) is not understood. We have ectopically expressed the putative peptide ligand encoding genes MtCLE12 and MtCLE13 in M. truncatula which abolished nodulation completely in wild-type roots but not in the supernodulating null mutant sunn-4. Further, root growth inhibition was detected when MtCLE12 was ectopically expressed in wild-type roots or synthetic CLE12 peptide was applied exogenously. To identify downstream genes, roots of wild-type and sunn-4 mutant overexpressing MtCLE12 were used for quantitative gene expression analysis. We found that, in 35S:MtCLE12 roots, NODULE INCEPTION (NIN, a central regulator of nodulation) was down-regulated, whereas MtEFD (ethylene response factor required for nodule differentiation) and MtRR8 (a type-A response regulator thought to be involved in the negative regulation of cytokinin signaling), were up-regulated. Moreover, we found that the up-regulation of MtEFD and MtRR8 caused by overexpressing MtCLE12 is SUNN-dependent. Hence, our data link for the first time the pathways for Nod factor signaling, cytokinin perception and AON.


Assuntos
Medicago truncatula/genética , Proteínas de Plantas/metabolismo , Nodulação , Plantas Geneticamente Modificadas/metabolismo , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Transdução de Sinais , Regulação da Expressão Gênica de Plantas , Vetores Genéticos , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Modelos Moleculares , Mutação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Proteínas Recombinantes de Fusão/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium meliloti/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...