Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(22): 10386-10396, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38758612

RESUMO

Scheelite-type metal oxides are a notable class of functional materials, with applications including ionic conductivity, photocatalysis, and the safe storage of radioactive waste. To further engineer these materials for specific applications, a detailed understanding of how their properties can change under different conditions is required─not just in the long-range average structure but also in the short-range local structure. This paper outlines a detailed investigation of the metal oxide CsReO4, which exhibits an uncommon orthorhombic Pnma pseudo-scheelite-type structure at room temperature. Using synchrotron X-ray diffraction, the average structure of CsReO4 is found to undergo a transformation from the orthorhombic Pnma pseudo-scheelite-type structure to the tetragonal I41/a scheelite-type structure at ∼440 K. In the X-ray pair distribution function analysis, lattice strain and rotations of the ReO4 tetrahedra are apparent above 440 K despite the increase in long-range average symmetry, revealing a disconnect between the structural models at different length scales. This study demonstrates how the bonding requirements and ionic radii of the A-site cation can induce disorder that is detectable at different length scales, affecting the physical properties of the material.

2.
ACS Nano ; 18(14): 9852-9870, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38526912

RESUMO

The nucleation, crystallization, and growth mechanisms of MnFe2O4, CoFe2O4, NiFe2O4, and ZnFe2O4 nanocrystallites prepared from coprecipitated transition metal (TM) hydroxide precursors treated at sub-, near-, and supercritical hydrothermal conditions have been studied by in situ X-ray total scattering (TS) with pair distribution function (PDF) analysis, and in situ synchrotron powder X-ray diffraction (PXRD) with Rietveld analysis. The in situ TS experiments were carried out on 0.6 M TM hydroxide precursors prepared from aqueous metal chloride solutions using 24.5% NH4OH as the precipitating base. The PDF analysis reveals equivalent nucleation processes for the four spinel ferrite compounds under the studied hydrothermal conditions, where the TMs form edge-sharing octahedrally coordinated hydroxide units (monomers/dimers and in some cases trimers) in the aqueous precursor, which upon hydrothermal treatment nucleate through linking by tetrahedrally coordinated TMs. The in situ PXRD experiments were carried out on 1.2 M TM hydroxide precursors prepared from aqueous metal nitrate solutions using 16 M NaOH as the precipitating base. The crystallization and growth of the nanocrystallites were found to progress via different processes depending on the specific TMs and synthesis temperatures. The PXRD data show that MnFe2O4 and CoFe2O4 nanocrystallites rapidly grow (typically <1 min) to equilibrium sizes of 20-25 nm and 10-12 nm, respectively, regardless of applied temperature in the 170-420 °C range, indicating limited possibility of targeted size control. However, varying the reaction time (0-30 min) and temperature (150-400 °C) allows different sizes to be obtained for NiFe2O4 (3-30 nm) and ZnFe2O4 (3-12 nm) nanocrystallites. The mechanisms controlling the crystallization and growth (nucleation, growth by diffusion, Ostwald ripening, etc.) were examined by qualitative analysis of the evolution in refined scale factor (proportional to extent of crystallization) and mean crystallite volume (proportional to extent of growth). Interestingly, lower kinetic barriers are observed for the formation of the mixed spinels (MnFe2O4 and CoFe2O4) compared to the inverse (NiFe2O4) and normal (ZnFe2O4) spinel structured compounds, suggesting that the energy barrier for formation may be lowered when the TMs have no site preference.

3.
J Appl Crystallogr ; 55(Pt 5): 1336-1350, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36249502

RESUMO

Powder X-ray diffraction (PXRD) and neutron powder diffraction (NPD) have been used to investigate the crystal structure of CoFe2O4 nanoparticles prepared via different hydro-thermal synthesis routes, with particular attention given to accurately determining the spinel inversion degrees. The study is divided into four parts. In the first part, the investigations focus on the influence of using different diffraction pattern combinations (NPD, Cu-source PXRD and Co-source PXRD) for the structural modelling. It is found that combining PXRD data from a Co source with NPD data offers a robust structural model. The second part of the study evaluates the reproducibility of the employed multipattern Rietveld refinement procedure using different data sets collected on the same sample, as well as on equivalently prepared samples. The refinement procedure gives reproducible results and reveals that the synthesis method is likewise reproducible since only minor differences are noted between the samples. The third part focuses on the structural consequences of (i) the employed heating rate (achieved using three different hydro-thermal reactor types) and (ii) changing the cobalt salt in the precursors [aqueous salt solutions of Co(CH3COOH)2, Co(NO3)2 and CoCl2] in the synthesis. It is found that increasing the heating rate causes a change in the crystal structure (unit cell and crystallite sizes) while the Co/Fe occupancy and magnetic parameters remain similar in all cases. Also, changing the type of cobalt salt does not alter the final crystal/magnetic structure of the CoFe2O4 nanoparticles. The last part of this study is a consideration of the chemicals and parameters used in the synthesis of the different samples. All the presented samples exhibit a similar crystal and magnetic structure, with only minor deviations. It is also evident that the refinement method used played a key role in the description of the sample.

4.
Inorg Chem ; 61(40): 15961-15972, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36153995

RESUMO

The structures and magnetic properties of the Os4+ (5d4) halides K2OsCl6, K2OsBr6, Na2OsBr6, and Na2OsBr6·6H2O are described. K2OsCl6 and K2OsBr6 have a cubic vacancy-ordered double perovskite structure but undergo different symmetry-lowering structural phase transitions upon cooling associated with a combination of the relative size of the ions and differences in their chemical bonding. The structure of Na2OsBr6·6H2O has been determined for the first time and the thermal stability of this has been established using a combination of in situ diffraction and TGA. Na2OsBr6·6H2O and Na2OsBr6 are isostructural with the analogous iridium chlorides, Na2IrCl6·6H2O and Na2IrCl6, and dehydration proceeds via different intermediate phases. The magnetic moments of four compounds display a Kotani-like behavior consistent with a Jeff = 0 ground state; however, the magnetic susceptibility measurements reveal unusual low temperature properties indicative of a weak magnetic ground state.

5.
J Am Chem Soc ; 144(34): 15612-15621, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35994733

RESUMO

The stereochemical activity of lone pair electrons plays a central role in determining the structural and electronic properties of both chemically simple materials such as H2O, as well as more complex condensed phases such as photocatalysts or thermoelectrics. TlReO4 is a rare example of a non-magnetic material exhibiting a re-entrant phase transition and emphanitic behavior in the long-range structure. Here, we describe the role of the Tl+ 6s2 lone pair electrons in these unusual phase transitions and illustrate its tunability by chemical doping, which has broad implications for functional materials containing lone pair bearing cations. First-principles density functional calculations clearly show the contribution of the Tl+ 6s2 in the valence band region. Local structure analysis, via neutron total scattering, revealed that changes in the long-range structure of TlReO4 occur due to changes in the correlation length of the Tl+ lone pairs. This has a significant effect on the anion interactions, with long-range ordered lone pairs creating a more densely packed structure. This resulted in a trade-off between anionic repulsions and lone pair correlations that lead to symmetry lowering upon heating in the long-range structure, whereby lattice expansion was necessary for the Tl+ lone pairs to become highly correlated. Similarly, introducing lattice expansion through chemical pressure allowed long-range lone pair correlations to occur over a wider temperature range, demonstrating a method for tuning the energy landscape of lone pair containing functional materials.

6.
Dalton Trans ; 50(33): 11485-11497, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34346454

RESUMO

Phase transition and high-temperature properties of NdNbO4 and NdTaO4 were studied in situ using powder neutron diffraction methods. Both oxides undergo a reversible phase transition from a monoclinic I2/a phase at low temperatures to a tetragonal I41/a phase at high temperatures. The phase transition has been investigated through analysis of the spontaneous strains and symmetry distortion modes. Well below the transition temperature, Tc, the thermal evolution of the lattice parameters and symmetry modes suggest the transition is continuous, although a small discontinuity in both the spontaneous strains and symmetry distortion modes shows the transition is strictly first order. Analysis of the refined structures reveals that the Nb and Ta cations are best described as having a distorted 6-coordinate arrangement in the monoclinic structure, with four short and two long bonds. Breaking of the two long bonds at high temperatures, resulting in a transformation of the Nb(Ta) coordination to a regular tetrahedron, is believed to be responsible for the first order nature of the transition.

7.
Front Chem ; 9: 706269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277573

RESUMO

The structure of lead-technetium pyrochlore has been refined in space group F d 3 ¯ m with a = 10.36584(2) Å using a combination of synchrotron X-ray and neutron powder diffraction data and confirmed via Electron Diffraction. The oxide is found to be oxygen deficient with a stoichiometry of Pb2Tc2O7-d. Displacive disorder of the Pb cations is evident from the refinements, as has been observed in Bi2Tc2O7-d. X-ray absorption spectroscopic measurements at the Tc K-edge demonstrate the valence of the Tc is greater than 4.0 as anticipated from the refined oxygen stoichiometry. Raman spectroscopy confirms the presence of disorder leading us to conclude that this pyrochlore is the first example of a valence V technetium oxide.

8.
Inorg Chem ; 60(7): 4517-4530, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33688721

RESUMO

The long-range average and short-range local structures in the Tm2(Ti2-xTmx)O7-x/2 (x = 0.00-0.67) series were studied using a combination of diffraction and spectroscopic techniques. The long-range average structure, established from synchrotron X-ray and neutron powder diffraction data, shows the development of multiphase regions from x = 0.134 and the formation of antisite cation disorder from x = 0.402. The crystal field splitting of the Ti4+ ions, as derived from the Ti L3-edge X-ray absorption near-edge structure (XANES) spectroscopy, decreases gradually from 2.17 to 1.92 eV with increasing Tm3+ content (x), reflecting the increase in coordination number from 6 to predominantly 7. This is consistent with a gradual evolution of the short-range local disorder from x = 0.00 to 0.67. These results suggest that local disorder develops gradually throughout the entire composition range, whereas changes in the long-range disorder occur more suddenly. Electrochemical impedance spectroscopic results show an increase in oxygen ionic conductivity at 1000 °C, by a factor of 4 upon doping at x = 0.268. This suggests that inducing small amounts of disorder into the pyrochlore structure, by stuffing, may lead to applications of this material as a solid electrolyte in solid-oxide fuel cells.

9.
Inorg Chem ; 59(15): 11184-11192, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32654481

RESUMO

Temperature treatment of magnetic Mn-Zn ferrites with the composition Mn0.6Zn0.2Fe2.2O4 up to 1100 °C results in a tremendous enhancement of the saturation magnetization by more than 60%. Employing a robust combined Rietveld refinement of powder X-ray and neutron diffraction (PXRD and NPD) data, it is revealed how a reordering of the cations takes place during the annealing step, the extent of which depends on the annealing temperature. While Zn(II) exclusively occupies tetrahedral sites throughout the whole temperature range, as the annealing temperature increases up to 700 °C, the Mn(II) cation distribution shifts from 80(7)% of the total Mn content occupying the octahedral sites (partly inverse spinel) to Mn only being present on the tetrahedral sites (normal spinel). Above 700 °C, pronounced crystallite growth is observed, followed by an increase of the saturation magnetization. Complementary techniques such as energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM) confirm an even cation distribution and the particle growth with annealing temperature. The structural changes caused by annealing of spinel ferrites directly alter the magnetic properties of the materials, thus serving as an easy handle for enhancing their magnetic properties.

10.
Nanoscale ; 12(17): 9481-9494, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32347264

RESUMO

Several M-type SrFe12O19 nanoparticle samples with different morphologies have been synthesized by different hydrothermal and sol-gel synthesis methods. Combined Rietveld refinements of neutron and X-ray powder diffraction data with a constrained structural model reveal a clear correlation between crystallite size and long-range magnetic order, which influences the macroscopic magnetic properties of the sample. The tailor-made powder samples were compacted into dense bulk magnets (>90% of the theoretical density) by spark plasma sintering (SPS). Powder diffraction as well as X-ray and neutron pole figure measurements and analyses have been carried out on the compacted specimens in order to characterize the nuclear (structural) and magnetic alignment of the crystallites within the dense magnets. The obtained results, combined with macroscopic magnetic measurements, reveal a direct influence of the nanoparticle morphology on the self-induced texture, crystallite growth during compaction and macroscopic magnetic performance. An increasing diameter-to-thickness aspect ratio of the platelet-like nanoparticles leads to increasing degree of crystallite alignment achieved by SPS. Consequently, magnetically aligned, highly dense magnets with excellent magnetic performance (30(3) kJ m-3) are obtained solely by nanostructuring means, without application of an external magnetic field before or during compaction. The demonstrated control over nanoparticle morphology and, in turn, crystal and magnetic texture is a key step on the way to designing nanostructured hexaferrite magnets with optimized performance.

11.
IUCrJ ; 6(Pt 3): 492-499, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31098029

RESUMO

W-type hexaferrites (WHFs) (SrMe 2Fe16O27, Me = Mg, Co, Ni and Zn) are hard magnetic materials with high potential for permanent magnet applications owing to their large crystalline anisotropy and high cation tunability. However, little is known with regards to their complex structural and magnetic characteristics. Here, the substitution of metals (Me = Mg, Co, Ni and Zn) in WHFs is described and their crystal and magnetic structures investigated. From joined refinements of X-ray and neutron powder diffraction data, the atomic positions of the Me atoms were extracted along with the magnetic dipolar moment of the individual sites. The four types of WHFs exhibit ferrimagnetic ordering. For Mg, Ni and Zn the magnetic moments are found to be ordered colinearly and with the magnetic easy axis along the crystallographic c axis. In SrCo2Fe16O27, however, the spontaneous magnetization changes from uniaxial to planar, with the moments aligning in the crystallographic ab plane. Macromagnetic properties were measured using a vibration sample magnetometer. The measured saturation magnetization (M s) between the different samples follows the same trend as the calculated M s extracted from the refined magnetic moments of the neutron powder diffraction data. Given the correlation between the calculated M s and the refined substitution degree of the different Me in specific crystallographic sites, the agreement between the measured and calculated M s values consolidates the robustness of the structural and magnetic Rietveld model.

12.
ACS Appl Nano Mater ; 1(7): 3693-3704, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30087953

RESUMO

During the past decade, CoFe2O4 (hard)/Co-Fe alloy (soft) magnetic nanocomposites have been routinely prepared by partial reduction of CoFe2O4 nanoparticles. Monoxide (i.e., FeO or CoO) has often been detected as a byproduct of the reduction, although it remains unclear whether the formation of this phase occurs during the reduction itself or at a later stage. Here, a novel reaction cell was designed to monitor the reduction in situ using synchrotron powder X-ray diffraction (PXRD). Sequential Rietveld refinements of the in situ data yielded time-resolved information on the sample composition and confirmed that the monoxide is generated as an intermediate phase. The macroscopic magnetic properties of samples at different reduction stages were measured by means of vibrating sample magnetometry (VSM), revealing a magnetic softening with increasing soft phase content, which was too pronounced to be exclusively explained by the introduction of soft material in the system. The elemental compositions of the constituent phases were obtained from joint Rietveld refinements of ex situ high-resolution PXRD and neutron powder diffraction (NPD) data. It was found that the alloy has a tendency to emerge in a Co-rich form, inducing a Co deficiency on the remaining spinel phase, which can explain the early softening of the magnetic material.

13.
Nanoscale ; 10(31): 14902-14914, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30044457

RESUMO

Magnetic spinel ferrite MFe2O4 (M = Mn, Co, Ni, Zn) nanoparticles have been prepared via simple, green and scalable hydrothermal synthesis pathways utilizing sub- and supercritical conditions to attain specific product characteristics. The crystal-, magnetic- and micro-structures of the prepared crystallites have been elucidated through meticulous characterization employing several complementary techniques. Analysis of energy dispersive X-ray spectroscopy (EDS) and X-ray absorption near edge structure (XANES) data verifies the desired stoichiometries with divalent M and trivalent Fe ions. Robust structural characterization is carried out by simultaneous Rietveld refinement of a constrained structural model to powder X-ray diffraction (PXRD) and high-resolution neutron powder diffraction (NPD) data. The structural modeling reveals different affinities of the 3d transition metal ions for the specific crystallographic sites in the nanocrystallites, characterized by the spinel inversion degree, x, [M2+1-xFe3+x]tet[M2+xFe3+2-x]octO4, compared to the well-established bulk structures. The MnFe2O4 and CoFe2O4 nanocrystallites exhibit random disordered spinel structures (x = 0.643(3) and 0.660(6)), while NiFe2O4 is a completely inverse spinel (x = 1.00) and ZnFe2O4 is close to a normal spinel (x = 0.166(10)). Furthermore, the size, size distribution and morphology of the nanoparticles have been assessed by peak profile analysis of the diffraction data, transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). The differences in nanostructure, spinel inversion and distinct magnetic nature of the M2+ ions directly alter the magnetic structures of the crystallites at the atomic-scale and consequently the macroscopic magnetic properties of the materials. The present study serves as an important structural benchmark for the rapidly expanding field of spinel ferrite nanoparticle research.

14.
Sci Rep ; 8(1): 7325, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743636

RESUMO

Nanocrystallites of the permanent magnetic material SrFe12O19 were synthesised using a conventional sol-gel (CSG) and a modified sol-gel (MSG) synthesis route. In the MSG synthesis, crystallite growth takes place in a solid NaCl matrix, resulting in freestanding nanocrystallites, as opposed to the CSG synthesis, where the produced nanocrystals are strongly intergrown. The resulting nanocrystallites from both methods exhibit similar intrinsic magnetic properties, but significantly different morphology and degree of aggregation. The nanocrystallites were compacted into dense pellets using a Spark Plasma Sintering (SPS) press, this allows investigating the influence of crystallite morphology and the alignment of the nanocrystallites on the magnetic performance. A remarkable correlation was observed between the crystallites morphology and their ability to align in the compaction process. Consequently, a significant enhancement of the maximum energy product was obtained after SPS for the MSG prepared sample (22.0 kJ/m3), compared to CSG sample, which achieved an energy product of 11.6 kJ/m3.

15.
Sci Rep ; 6: 25985, 2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27174466

RESUMO

Magnetic property is one of the important properties of nanomaterials. Direct investigation of the magnetic property on the nanoscale is however challenging. Herein we present a quantitative measurement of the magnetic properties including the magnitude and the orientation of the magnetic moment of strontium hexaferrite (SrFe12O19) nanostructures using magnetic force microscopy (MFM) with nanoscale spatial resolution. The measured magnetic moments of the as-synthesized individual SrFe12O19 nanoplatelets are on the order of ~10(-16) emu. The MFM measurements further confirm that the magnetic moment of SrFe12O19 nanoplatelets increases with increasing thickness of the nanoplatelet. In addition, the magnetization directions of nanoplatelets can be identified by the contrast of MFM frequency shift. Moreover, MFM frequency imaging clearly reveals the tiny magnetic structures of a compacted SrFe12O19 pellet. This work demonstrates the mesoscopic investigation of the intrinsic magnetic properties of materials has a potential in development of new magnetic nanomaterials in electrical and medical applications.

16.
Dalton Trans ; 45(15): 6439-48, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-26947563

RESUMO

Magnetically soft zinc-substituted cobalt ferrite ZnxCo1-xFe2O4 (x = 0.4, 0.5 and 0.6) nanocrystallites were successfully synthesized from cheap, abundant materials, using a mild, scalable hydrothermal route. The partial substitution of zinc by cobalt was generally observed to reduce the resulting crystallite sizes and the saturation magnetization. Post-synthesis annealing proved to be an efficient way of inducing crystallite growth to a certain limit, thereby improving the magnetic properties. In the annealing experiments crystallite growth was observed to be extremely dependent on the annealing atmosphere, with the size increasing from dynamic vacuum, to air, argon and helium. As prepared crystallite sizes were found to be between 4.74(1) nm and 5.90(1) nm. Heat treatment caused the growth to increase to anywhere between 7.9 nm and 21.7 nm. The largest crystallite sizes, 35.2(1) nm to 44.9(1) nm, were reached by compaction of the powders prior to heating. The largest magnetizations were generally observed in the largest samples containing the least amount of zinc. The highest observed saturation magnetization was 80.49(1) emu g(-1) measured for a sample with 35.2(1) nm sized crystallites of the composition Zn0.35Co0.66Fe1.99O4.

17.
Nanoscale ; 8(5): 2857-66, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26763371

RESUMO

The influence of synthesis and compaction parameters is investigated with regards to formation of high performance SrFe12O19 bulk magnets. The produced magnets consist of highly aligned, single-magnetic domain nanoplatelets of SrFe12O19. The relationship between the magnetic performance of the samples and their structural features is established through systematic characterization by Vibrating Sample Magnetometry (VSM) and Rietveld refinement of powder X-ray diffraction data (PXRD). The analysis is supported by complementary techniques including Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM) and X-ray pole figure measurements. SrFe12O19 hexagonal nanoplatelets with various sizes are synthesized by a supercritical hydrothermal flow method. The crystallite sizes are tuned by varying the Fe/Sr ratio in the precursor solution. Compaction of SrFe12O19 nanoplatelets into bulk magnets is performed by Spark Plasma Sintering (SPS). Rietveld refinement of the pressed pellets and texture analysis of pole figure measurements reveal that SPS pressing produces a high degree of alignment of the nanoplatelets, achieved without applying any magnetic field prior or during compaction. The highly aligned nanocrystallites combined with crystal growth during SPS give rise to an enormous enhancement of the magnetic properties compared to the as-synthesized powders, leading to high performance bulk magnets with energy products of 26 kJ m(-3).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...