Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 153(21): 214705, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33291902

RESUMO

Triplet-triplet annihilation photon upconversion (TTA-UC) in solid state assemblies are desirable since they can be easily incorporated into devices such as solar cells, thus utilizing more of the solar spectrum. Realizing this is, however, a significant challenge that must circumvent the need for molecular diffusion, poor exciton migration, and detrimental back energy transfer among other hurdles. Here, we show that the above-mentioned issues can be overcome using the versatile and easily synthesized oxotriphenylhexanoate (OTHO) gelator that allows covalent incorporation of chromophores (or other functional units) at well-defined positions. To study the self-assembly properties as well as its use as a TTA-UC platform, we combine the benchmark couple platinum octaethylporphyrin as a sensitizer and 9,10-diphenylanthracene (DPA) as an annihilator, where DPA is covalently linked to the OTHO gelator at different positions. We show that TTA-UC can be achieved in the chromophore-decorated gels and that the position of attachment affects the photophysical properties as well as triplet energy transfer and triplet-triplet annihilation. This study not only provides proof-of-principle for the covalent approach but also highlights the need for a detailed mechanistic insight into the photophysical processes underpinning solid state TTA-UC.

2.
Chem Sci ; 9(41): 8019-8023, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30450186

RESUMO

A facile cocktail approach implying the mixing of diarylethene (DAE) photoswitches and low molecular weight gelators (LMWG) is presented. The photoresponsive gels exhibit multicolored emission that can be precisely controlled by different light exposure schemes (wavelength and dose), applicable for fluorescence patterning/writing. Including also a blue-emitting fluorophore allows for tri-chromatic color tuning of the emission via multistep energy transfer reactions, which in turn yields a non-linear response between the emission spectra and the light dose. This feature is highly desired in data security and anti-counterfeiting contexts. The information written in the gels can be conveniently erased by light, mass diffusion, or shaking; the latter being due to the thixotropic properties of the gels.

3.
Chemistry ; 24(32): 8071-8075, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29663537

RESUMO

Herein we report a multi-component reaction approach for the development of a new class of hydrogelators based on the OxoTriphenylHexanOate (OTHO) backbone. A focused library of OTHOs has been synthesized and their hydrogelation features evaluated. The two most potent hydrogelators were studied by rheology revealing different stiffness, appearances and thixotropic behavior of the gels. The new gelators showcase the versatility of the OTHO backbone as a platform for the design of functionalized hydrogels with tunable gel properties.

4.
Chem Sci ; 8(1): 416-422, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451187

RESUMO

Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy (DNP SENS) is an effective method to significantly improve solid-state NMR investigation of solid surfaces. The presence of unpaired electrons (polarizing agents) is crucial for DNP, but it has drawbacks such as leading to faster nuclear spin relaxation, or even reaction with the substrate under investigation. The latter can be a particular problem for heterogeneous catalysts. Here, we present a series of carbosilane-based dendritic polarizing agents, in which the bulky dendrimer can reduce the interaction between the solid surface and the free radical. We thereby preserve long nuclear T'2 of the surface species, and even successfully enhance a reactive heterogeneous metathesis catalyst.

5.
Chemistry ; 22(16): 5598-606, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-26992052

RESUMO

A series of 18 nitroxide biradicals derived from bTurea has been prepared, and their enhancement factors ɛ ((1)H) in cross-effect dynamic nuclear polarization (CE DNP) NMR experiments at 9.4 and 14.1 T and 100 K in a DNP-optimized glycerol/water matrix ("DNP juice") have been studied. We observe that ɛ ((1)H) is strongly correlated with the substituents on the polarizing agents, and its trend is discussed in terms of different molecular parameters: solubility, average e-e distance, relative orientation of the nitroxide moieties, and electron spin relaxation times. We show that too short an e-e distance or too long a T1e can dramatically limit ɛ ((1)H). Our study also shows that the molecular structure of AMUPol is not optimal and its ɛ ((1)H) could be further improved through stronger interaction with the glassy matrix and a better orientation of the TEMPO moieties. A new AMUPol derivative introduced here provides a better ɛ ((1)H) than AMUPol itself (by a factor of ca. 1.2).

6.
Chem Sci ; 7(1): 550-558, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29896347

RESUMO

A series of 37 dinitroxide biradicals have been prepared and their performance studied as polarizing agents in cross-effect DNP NMR experiments at 9.4 T and 100 K in 1,1,2,2-tetrachloroethane (TCE). We observe that in this regime the DNP performance is strongly correlated with the substituents on the polarizing agents, and electron and nuclear spin relaxation times, with longer relaxation times leading to better enhancements. We also observe that deuteration of the radicals generally leads to better DNP enhancement but with longer build-up time. One of the new radicals introduced here provides the best performance obtained so far under these conditions.

7.
Chemistry ; 21(37): 12971-7, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26315337

RESUMO

Dynamic nuclear polarization (DNP) has been shown to greatly enhance spectroscopic sensitivity, creating novel opportunities for NMR studies on complex and large molecular assemblies in life and material sciences. In such applications, however, site-specificity and spectroscopic resolution become critical factors that are usually difficult to control by current DNP-based approaches. We have examined in detail the effect of directly attaching mono- or biradicals to induce local paramagnetic relaxation effects and, at the same time, to produce sizable DNP enhancements. Using a membrane-embedded ion channel as an example, we varied the degree of paramagnetic labeling and the location of the DNP probes. Our results show that the creation of local spin clusters can generate sizable DNP enhancements while preserving the intrinsic benefits of paramagnetic relaxation enhancement (PRE)-based NMR approaches. DNP using chemical labeling may hence provide an attractive route to introduce molecular specificity into DNP studies in life science applications and beyond.


Assuntos
Proteínas de Membrana/química , Marcadores de Spin , Espectroscopia de Ressonância de Spin Eletrônica , Microscopia de Polarização , Ressonância Magnética Nuclear Biomolecular
8.
J Biomol NMR ; 60(2-3): 157-68, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25284462

RESUMO

Dynamic nuclear polarization (DNP) has become a powerful method to enhance spectroscopic sensitivity in the context of magnetic resonance imaging and nuclear magnetic resonance spectroscopy. We show that, compared to DNP at lower field (400 MHz/263 GHz), high field DNP (800 MHz/527 GHz) can significantly enhance spectral resolution and allows exploitation of the paramagnetic relaxation properties of DNP polarizing agents as direct structural probes under magic angle spinning conditions. Applied to a membrane-embedded K(+) channel, this approach allowed us to refine the membrane-embedded channel structure and revealed conformational substates that are present during two different stages of the channel gating cycle. High-field DNP thus offers atomic insight into the role of molecular plasticity during the course of biomolecular function in a complex cellular environment.


Assuntos
Proteínas de Bactérias/química , Campos Magnéticos , Ressonância Magnética Nuclear Biomolecular , Canais de Potássio/química , Isótopos de Carbono , Ativação do Canal Iônico , Solventes , Temperatura
9.
Chem Commun (Camb) ; 50(70): 10137-9, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25050796

RESUMO

Surface functionalisation with organic modifiers of multi-layered zirconium phosphate (ZrP) nanoparticles used as polymer fillers can be directly probed by dynamic nuclear polarisation NMR, which provides unambiguous evidence of the presence of P-O-C chemical bonds at the surface of the ZrP layers, thereby confirming successful functionalisation.


Assuntos
Espectroscopia de Ressonância Magnética , Nanopartículas Metálicas/química , Polímeros/química , Zircônio/química , Espectroscopia de Ressonância Magnética/métodos
11.
J Am Chem Soc ; 135(41): 15459-66, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23978152

RESUMO

Mesoporous hybrid silica-organic materials containing homogeneously distributed stable mono- or dinitroxide radicals covalently bound to the silica surface were developed as polarization matrixes for solid-state dynamic nuclear polarization (DNP) NMR experiments. For TEMPO-containing materials impregnated with water or 1,1,2,2-tetrachloroethane, enhancement factors of up to 36 were obtained at ∼100 K and 9.4 T without the need for a glass-forming additive. We show that the homogeneous radical distribution and the subtle balance between the concentration of radical in the material and the fraction of radicals at a sufficient inter-radical distance to promote the cross-effect are the main determinants for the DNP enhancements we obtain. The material, as well as an analogue containing the poorly soluble biradical bTUrea, is used as a polarizing matrix for DNP NMR experiments of solutions containing alanine and pyruvic acid. The analyte is separated from the polarization matrix by simple filtration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...