Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 32(9): 1121-34, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22525277

RESUMO

Lung cancer is the leading cause of cancer death worldwide. Recent data suggest that cyclic nucleotide phosphodiesterases (PDEs) are relevant in various cancer pathologies. Pathophysiological role of phosphodiesterase 4 (PDE4) with possible therapeutic prospects in lung cancer was investigated. We exposed 10 different lung cancer cell lines (adenocarcinoma, squamous and large cell carcinoma) to hypoxia and assessed expression and activity of PDE4 by real-time PCR, immunocytochemistry, western blotting and PDE activity assays. Expression and activity of distinct PDE4 isoforms (PDE4A and PDE4D) increased in response to hypoxia in eight of the studied cell lines. Furthermore, we analyzed various in silico predicted hypoxia-responsive elements (p-HREs) found in in PDE4A and PDE4D genes. Performing mutation analysis of the p-HRE in luciferase reporter constructs, we identified four functional HRE sites in the PDE4A gene and two functional HRE sites in the PDE4D gene that mediated hypoxic induction of the reporter. Silencing of hypoxia-inducible factor subunits (HIF1α and HIF2α) by small interfering RNA reduced hypoxic induction of PDE4A and PDE4D. Vice versa, using a PDE4 inhibitor (PDE4i) as a cyclic adenosine monophosphate (cAMP) -elevating agent, cAMP analogs or protein kinase A (PKA)-modulating drugs and an exchange protein directly activated by cAMP (EPAC) activator, we demonstrated that PDE4-cAMP-PKA/EPAC axis enhanced HIF signaling as measured by HRE reporter gene assay, HIF and HIF target genes expression ((lactate dehydrogenase A), LDHA, (pyruvate dehydrogenase kinase 1) PDK1 and (vascular endothelial growth factor A) VEGFA). Notably, inhibition of PDE4 by PDE4i or silencing of PDE4A and PDE4D reduced human lung tumor cell proliferation and colony formation. On the other hand, overexpression of PDE4A or PDE4D increased human lung cancer proliferation. Moreover, PDE4i treatment reduced hypoxia-induced VEGF secretion in human cells. In vivo, PDE4i inhibited tumor xenograft growth in nude mice by attenuating proliferation and angiogenesis. Our findings suggest that PDE4 is expressed in lung cancer, crosstalks with HIF signaling and promotes lung cancer progression. Thus, PDE4 may represent a therapeutic target for lung cancer therapy.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , AMP Cíclico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Humanos , Camundongos , Camundongos Nus , Inibidores da Fosfodiesterase 4/farmacologia , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transplante Heterólogo
2.
Clin Microbiol Infect ; 17(1): 7-14, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20545963

RESUMO

Inflammation underlies a wide variety of physiological and pathological processes. Acute inflammation is the initial response of the body to harmful stimuli. Chronic inflammation, by contrast, is a prolonged, dysregulated and maladaptive response that involves active inflammation, tissue destruction and attempts at tissue repair. Over the past few years, such persistent inflammation has been shown to be associated with pulmonary hypertension (PH). Substantial advances in basic and experimental science have illuminated the role of inflammation and the underlying cellular and molecular mechanisms that contribute to PH. This review summarizes the experimental and clinical evidence for inflammation in various types of PH. In addition, it assesses the current state of knowledge regarding the inducers/triggers of chronic inflammation and infection, as well as the inflammatory mediators and cells that are involved in PH. Infiltration of inflammatory cells, such as dendritic cells, macrophages, mast cells, T-lymphocytes and B-lymphocytes, in the vascular lesions and an elevation of serum/tissue concentrations of proinflammatory cytokines and chemokines and their contribution to pulmonary vascular remodelling are reported in detail. We review the data supporting the use of inflammatory markers as prognostic and predictive factors in PH. Finally, we consider how new insights into inflammation in PH may identify innovative therapeutic strategies.


Assuntos
Doenças Transmissíveis/complicações , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/imunologia , Pneumonia/imunologia , Imunidade Adaptativa , Animais , Linfócitos B/imunologia , Humanos , Hipertensão Pulmonar/fisiopatologia , Imunidade Inata , Mediadores da Inflamação/imunologia , Pneumonia/complicações , Linfócitos T/imunologia
3.
Eur Respir J ; 31(3): 599-610, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18032446

RESUMO

Phosphodiesterase (PDE) inhibitors are currently under investigation for the therapy of pulmonary hypertension. The present study was designed to investigate chronic effects of oral pumafentrine, a mixed selective PDE-3/4 inhibitor, in monocrotaline (MCT)-induced pulmonary hypertension in rats. Treatment with pumafentrine (10 mg.kg(-1) daily) from week 4 to 6 after a single injection of MCT (60 mg.kg(-1)) partially reversed pulmonary hypertension and right heart hypertrophy in rats. In addition, small pulmonary arterial muscularisation, media hypertrophy and decrease in lumen area were largely reversed. Inhibition of smooth muscle proliferation under pumafentrine was demonstrated in vivo as was a pro-apoptotic effect of pumafentrine on vascular cells. Moreover, pumafentrine dose-dependently increased cyclic adenosine monophosphate levels and inhibited proliferation of cultured pulmonary arterial smooth muscle cells. In conclusion, oral pumafentrine partially reverses monocrotaline-induced pulmonary hypertension, lung vascular remodelling and right heart hypertrophy in rats.


Assuntos
Hipertensão Pulmonar/tratamento farmacológico , Hipertrofia Ventricular Direita/tratamento farmacológico , Pulmão/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Naftiridinas/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/efeitos dos fármacos , Modelos Animais de Doenças , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/patologia , Hipertrofia Ventricular Direita/induzido quimicamente , Pulmão/patologia , Masculino , Monocrotalina/administração & dosagem , Inibidores da Fosfodiesterase 3 , Inibidores da Fosfodiesterase 4 , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...