Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(2)2020 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-31963641

RESUMO

In core computer vision tasks, we have witnessed significant advances in object detection, localisation and tracking. However, there are currently no methods to detect, localize and track objects in road environments, and taking into account real-time constraints. In this paper, our objective is to develop a deep learning multi object detection and tracking technique applied to road smart mobility. Firstly, we propose an effective detector-based on YOLOv3 which we adapt to our context. Subsequently, to localize successfully the detected objects, we put forward an adaptive method aiming to extract 3D information, i.e., depth maps. To do so, a comparative study is carried out taking into account two approaches: Monodepth2 for monocular vision and MADNEt for stereoscopic vision. These approaches are then evaluated over datasets containing depth information in order to discern the best solution that performs better in real-time conditions. Object tracking is necessary in order to mitigate the risks of collisions. Unlike traditional tracking approaches which require target initialization beforehand, our approach consists of using information from object detection and distance estimation to initialize targets and to track them later. Expressly, we propose here to improve SORT approach for 3D object tracking. We introduce an extended Kalman filter to better estimate the position of objects. Extensive experiments carried out on KITTI dataset prove that our proposal outperforms state-of-the-art approches.

2.
Appl Opt ; 58(20): 5496-5505, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31504020

RESUMO

This paper presents an analytic expression for optimizing a monostatic, incoherent pulsed LiDAR scanner for small object detection. Using a hexagonal raster-scan pattern, we constrained the link budget by the need of detecting a distant object at a defined refresh rate with a 100% probability of detection, independently of its position on the scene. From the obtained expression, we minimized the needed laser mean power by playing on the beam divergence and collection efficiency via a drilled-hole mirror diameter. An expression for the probability of detection of said object was also deduced. The impact of both the refresh rate and the distance on the probability of detection was then studied, defining an expression for the cutoff distance and giving a complete overview of the system capabilities.

3.
Sensors (Basel) ; 18(4)2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29565310

RESUMO

In this paper, we address the problem of vehicle localization in urban environments. We rely on visual odometry, calculating the incremental motion, to track the position of the vehicle and on place recognition to correct the accumulated drift of visual odometry, whenever a location is recognized. The algorithm used as a place recognition module is SeqSLAM, addressing challenging environments and achieving quite remarkable results. Specifically, we perform the long-term navigation of a vehicle based on the fusion of visual odometry and SeqSLAM. The template library for this latter is created online using navigation information from the visual odometry module. That is, when a location is recognized, the corresponding information is used as an observation of the filter. The fusion is done using the EKF and the UKF, the well-known nonlinear state estimation methods, to assess the superior alternative. The algorithm is evaluated using the KITTI dataset and the results show the reduction of the navigation errors by loop-closure detection. The overall position error of visual odometery with SeqSLAM is 0.22% of the trajectory, which is much smaller than the navigation errors of visual odometery alone 0.45%. In addition, despite the superiority of the UKF in a variety of estimation problems, our results indicate that the UKF performs as efficiently as the EKF at the expense of an additional computational overhead. This leads to the conclusion that the EKF is a better choice for fusing visual odometry and SeqSlam in a long-term navigation context.

4.
Sensors (Basel) ; 17(7)2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28686213

RESUMO

Motion capture setups are used in numerous fields. Studies based on motion capture data can be found in biomechanical, sport or animal science. Clinical science studies include gait analysis as well as balance, posture and motor control. Robotic applications encompass object tracking. Today's life applications includes entertainment or augmented reality. Still, few studies investigate the positioning performance of motion capture setups. In this paper, we study the positioning performance of one player in the optoelectronic motion capture based on markers: Vicon system. Our protocol includes evaluations of static and dynamic performances. Mean error as well as positioning variabilities are studied with calibrated ground truth setups that are not based on other motion capture modalities. We introduce a new setup that enables directly estimating the absolute positioning accuracy for dynamic experiments contrary to state-of-the art works that rely on inter-marker distances. The system performs well on static experiments with a mean absolute error of 0.15 mm and a variability lower than 0.025 mm. Our dynamic experiments were carried out at speeds found in real applications. Our work suggests that the system error is less than 2 mm. We also found that marker size and Vicon sampling rate must be carefully chosen with respect to the speed encountered in the application in order to reach optimal positioning performance that can go to 0.3 mm for our dynamic study.

5.
Sensors (Basel) ; 17(5)2017 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-28531101

RESUMO

Long-term place recognition in outdoor environments remains a challenge due to high appearance changes in the environment. The problem becomes even more difficult when the matching between two scenes has to be made with information coming from different visual sources, particularly with different spectral ranges. For instance, an infrared camera is helpful for night vision in combination with a visible camera. In this paper, we emphasize our work on testing usual feature point extractors under both constraints: repeatability across spectral ranges and long-term appearance. We develop a new feature extraction method dedicated to improve the repeatability across spectral ranges. We conduct an evaluation of feature robustness on long-term datasets coming from different imaging sources (optics, sensors size and spectral ranges) with a Bag-of-Words approach. The tests we perform demonstrate that our method brings a significant improvement on the image retrieval issue in a visual place recognition context, particularly when there is a need to associate images from various spectral ranges such as infrared and visible: we have evaluated our approach using visible, Near InfraRed (NIR), Short Wavelength InfraRed (SWIR) and Long Wavelength InfraRed (LWIR).

6.
IEEE Trans Image Process ; 22(5): 1808-21, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23288336

RESUMO

Bio-inspired and non-conventional vision systems are highly researched topics. Among them, omnidirectional vision systems have demonstrated their ability to significantly improve the geometrical interpretation of scenes. However, few researchers have investigated how to perform object detection with such systems. The existing approaches require a geometrical transformation prior to the interpretation of the picture. In this paper, we investigate what must be taken into account and how to process omnidirectional images provided by the sensor. We focus our research on face detection and highlight the fact that particular attention should be paid to the descriptors in order to successfully perform face detection on omnidirectional images. We demonstrate that this choice is critical to obtaining high detection rates. Our results imply that the adaptation of existing object-detection frameworks, designed for perspective images, should be focused on the choice of appropriate image descriptors in the design of the object-detection pipeline.


Assuntos
Identificação Biométrica/métodos , Face/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Identificação Biométrica/instrumentação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...