Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
PLoS One ; 12(12): e0189982, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29261765

RESUMO

Male sexual differentiation in crustaceans is controlled by the androgenic gland (AG), a unique male endocrine organ that, in decapods, is located at the base of the 5th pereiopod. In these animals, the insulin-like androgenic gland hormone (IAG) is the major factor secreted from the AG to induce masculinization and maintain male characteristics. It has, however, recently been proposed that this hormone also plays a role in growth and ovarian development in females. In this study, we tested such a possibility by searching for the IAG gene in the marbled crayfish, a parthenogenetic animal that reproduces asexually to form an all-female genetic clone. Based on the phylogenetic relationship between the marbled crayfish and Procambarus fallax, a gonochoristic species of the same North American Cambaridae family, we searched for the IAG gene in the marbled crayfish and then fully sequenced it. The open reading frame of the gene was found to be completely identical in the two species, and their introns shared over 94% identity. It was also found that, in addition to its expression at the base of the 5th pereiopod and in the testes of male P. fallax crayfish, IAG was expressed in the muscle tissue of P. fallax males and females and even of the parthenogenetic marbled crayfish. These findings provide new insight into possible functions of IAG, in addition to its role as a masculinization-inducing factor, and also constitute the basis for a discussion of the evolutionary relationship between the above two species.


Assuntos
Astacoidea/genética , Hormônios Gonadais/genética , Insulina/genética , Partenogênese/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Feminino , Biblioteca Gênica , Genoma , Hormônios Gonadais/química , Hormônios Gonadais/metabolismo , Insulina/química , Insulina/metabolismo , Masculino , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
PLoS Negl Trop Dis ; 8(8): e3060, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25166746

RESUMO

Early malacological literature suggests that the outbreak of schistosomiasis, a parasitic disease transmitted by aquatic snails, in the Senegal River basin occurred due to ecological changes resulting from the construction of the Diama dam. The common treatment, the drug praziquantel, does not protect from the high risk of re-infection due to human contact with infested water on a daily basis. The construction of the dam interfered with the life cycle of the prawn Macrobrachium vollenhovenii by blocking its access to breeding grounds in the estuary. These prawns were demonstrated to be potential biological control agents, being effective predators of Schistosoma-susceptible snails. Here, we propose a responsible restocking strategy using all-male prawn populations which could provide sustainable disease control. Male prawns reach a larger size and have a lower tendency to migrate than females. We, therefore, expect that periodic restocking of all-male juveniles will decrease the prevalence of schistosomiasis and increase villagers' welfare. In this interdisciplinary study, we examined current prawn abundance along the river basin, complemented with a retrospective questionnaire completed by local fishermen. We revealed the current absence of prawns upriver and thus demonstrated the need for restocking. Since male prawns are suggested to be preferable for bio-control, we laid the molecular foundation for production of all-male M. vollenhovenii through a complete sequencing of the insulin-like androgenic gland-encoding gene (IAG), which is responsible for sexual differentiation in crustaceans. We also conducted bioinformatics and immunohistochemistry analyses to demonstrate the similarity of this sequence to the IAG of another Macrobrachium species in which neo-females are produced and their progeny are 100% males. At least 100 million people at risk of schistosomiasis are residents of areas that experienced water management manipulations. Our suggested non-breeding sustainable model of control-if proven successful-could prevent re-infections and thus prove useful throughout the world.


Assuntos
Palaemonidae , Controle Biológico de Vetores/métodos , Esquistossomose/prevenção & controle , Animais , Masculino , Palaemonidae/parasitologia , Palaemonidae/fisiologia , Rios/parasitologia , Senegal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...