Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(27): 18727-18740, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38934056

RESUMO

The utilization of InP-based biocompatible quantum dots (QDs) necessitates a comprehensive understanding of the structure-dependent characteristics influencing their optical behavior. The optimization of core/shell QDs for practical applications is of particular interest due to their reduced toxicity, enhanced photostability, and improved luminescence efficiency. This optimization involves analyzing thermally activated processes involving exciton and defect-related energy levels. This study investigates water-soluble colloidal InP/ZnS QDs with varying shell thicknesses and stabilizing coatings using temperature-dependent optical absorption (OA) and photoluminescence (PL). Our results indicate that all samples experience temperature-induced shifts in exciton absorption and luminescence peaks due to interactions with acoustic phonons. Despite the wide size distribution of nanocrystals, the halfwidth of the bands remains constant. We observe a temperature-dependent Stokes shift in InP/ZnS QDs, revealing the fine structure of exciton states across different configurations. Furthermore, our findings demonstrate common mechanisms underlying PL thermal quenching in these QDs, regardless of the shell thickness or coating type. Specifically, defect-related emissions arise from localized energy levels at the core/shell interface. At the same time, exciton PL quenching primarily occurs through thermally activated electron migration from the InP core to the ZnS shell. Overall, our study highlights the potential for tailoring the temperature response of InP/ZnS QDs by adjusting shell thickness, offering opportunities to optimize their performance for specific applications.

2.
Ultrastruct Pathol ; 48(1): 66-74, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38007715

RESUMO

It is known that the unfavorable outcome in patients infected with SARS-CoV-2 may be associated with the development of complications caused by heart damage due to the direct virus action. The mechanism of these cardiovascular injuries caused by SARS-CoV-2 infection has not been fully understood; however, the study of COVID-19-associated myocardial microcirculatory dysfunction can represent the useful strategy to solving this challenge. Thus, here we aimed to study the ultrastructural organization of endothelial cells of myocardial capillaries in patients with COVID-19. The morphology of endotheliocytes of the myocardial blood capillaries in patients with COVID-19 was studied on cardiac autopsy material using transmission electron microscopy. The endotheliocytes of myocardial capillaries in patients with COVID-19 were characterized by the abundant rough endoplasmic reticulum (ER) membranes, the Golgi complex, and free polysomal complexes of ribosomes and lipids. The presence of double membrane vesicles with virions and zippered ER was detected in the cytoplasm of endotheliocytes. The revealed endothelial ultrastructural changes indicate the remodeling of intracellular membranes during SARS-CoV-2 infection. Our findings confirm the formation of virus-induced structures in myocardial endothelial cells considered critical for viral replication and assembly. The data may elucidate the mechanisms of endothelial dysfunction development in patients with COVID-19 to provide potential targets for drug therapy.


Assuntos
COVID-19 , Humanos , Retículo Endoplasmático/ultraestrutura , Células Endoteliais , Microcirculação , SARS-CoV-2 , Autopsia
3.
Nanomaterials (Basel) ; 9(5)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075845

RESUMO

In this work, we have simulated the processes of broadening the first exciton band in optical absorption spectra (OA) for InP/ZnS ensembles of colloidal quantum dots (QDs). A phenomenological model has been proposed that takes into account the effects of the exciton-phonon interaction, and allows one to analyze the influence of the static and dynamic types of atomic disorder on the temperature changes in the spectral characteristics in question. To vary the degree of static disorder in the model system, we have used a parameter δ, which characterizes the QD dispersion in size over the ensemble. We have also calculated the temperature shifts of the maxima and changes in the half-width for the exciton peaks in single nanocrystals (δ = 0), as well as for the integrated OA bands in the QD ensembles with different values of δ = 0.6-17%. The simulation results and the OA spectra data measured for InP/ZnS nanocrystals of 2.1 nm (δ = 11.1%) and 2.3 nm (δ = 17.3%), are in good mutual agreement in the temperature range of 6.5 K-RT. It has been shown that the contribution of static disorder to the observed inhomogeneous broadening of the OA bands for the QDs at room temperature exceeds 90%. The computational experiments performed indicate that the temperature shift of the maximum for the integrated OA band coincides with that for the exciton peak in a single nanocrystal. In this case, a reliable estimate of the parameters of the fundamental exciton-phonon interaction can be made. Simultaneously, the values of the specified parameters, calculated from the temperature broadening of the OA spectra, can be significantly different from the true ones due to the effects of static atomic disorder in real QD ensembles.

4.
Trans R Soc Trop Med Hyg ; 102 Suppl 1: S134-9, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19121675

RESUMO

Burkholderia mallei and B. pseudomallei are highly pathogenic microorganisms for both humans and animals. Moreover, they are regarded as potential agents of bioterrorism. Thus, rapid and unequivocal detection and identification of these dangerous pathogens is critical. In the present study, we describe the use of an optimized protocol for the early diagnosis of experimental glanders and melioidosis and for the rapid differentiation and typing of Burkholderia strains. This experience with PCR-based identification methods indicates that single PCR targets (23S and 16S rRNA genes, 16S-23S intergenic region, fliC and type III secretion gene cluster) should be used with caution for identification of B. mallei and B. pseudomallei, and need to be used alongside molecular methods such as gene sequencing. Several molecular typing procedures have been used to identify genetically related B. pseudomallei and B. mallei isolates, including ribotyping, pulsed-field gel electrophoresis and multilocus sequence typing. However, these methods are time consuming and technically challenging for many laboratories. RAPD, variable amplicon typing scheme, Rep-PCR, BOX-PCR and multiple-locus variable-number tandem repeat analysis have been recommended by us for the rapid differentiation of B. mallei and B. pseudomallei strains.


Assuntos
Burkholderia mallei/isolamento & purificação , Burkholderia pseudomallei/isolamento & purificação , Mormo/diagnóstico , Melioidose/diagnóstico , Animais , Bioterrorismo , Burkholderia mallei/genética , Burkholderia pseudomallei/genética , Impressões Digitais de DNA , DNA Bacteriano , Mormo/microbiologia , Humanos , Melioidose/microbiologia , Dados de Sequência Molecular , Federação Russa
5.
Biomed Pharmacother ; 57(9): 428-33, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14652169

RESUMO

The minimally manipulated cells from fetal nervous and hemopoietic tissues (gestational age 16-22 weeks) were subarachnoidally implanted into 15 patients (18-52 years old) with severe consequences of traumatic spinal cord injury (SCI) at cervical or thoracic spine level. The times after SCI were from 1 month to 6 years. Each patient underwent from one to four cell transplantations (CT) with various time intervals. In 11 of 15 cases, CT was combined with an operative partial disruption of a connective tissue cyst and with implantation into a spinal cord lesion of a spinal cord fragment together with olfactory ensheathing cells. Before CT the patients showed complete motor and sensory function disorder consistent with a grade A of SCI according to Frankel classification. With CT treatment, six patients improved their neurological status from A to C grade of SCI, exhibiting incomplete restoration of both motor and sensory function. The status of other five CT-treated patients became consistent with SCI grade B and was characterized by appearance of contracting activity in some muscles and incomplete restoration of sensitivity. The remaining four patients did not exhibit any clinical improvements. No serious complications of CT were noted. The results suggest a clinical relevance of the CT-based approach to treating severe consequences of SCI.


Assuntos
Transplante de Células , Transplante de Tecido Fetal , Traumatismos da Medula Espinal/cirurgia , Adolescente , Adulto , Transplante de Tecido Encefálico , Humanos , Fígado/citologia , Fígado/embriologia , Masculino , Pessoa de Meia-Idade , Qualidade de Vida , Recuperação de Função Fisiológica , Medula Espinal/fisiopatologia , Medula Espinal/cirurgia , Medula Espinal/transplante , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...