Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 668: 283-294, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-30852205

RESUMO

Estimating soil organic carbon (SOC) stocks under agriculture, assessing the importance of their drivers and understanding the spatial distribution of SOC stocks are crucial to predicting possible future SOC stocks scenarios under climate change conditions and to designing appropriate mitigation and adaptation strategies. This study characterized and modelled SOC stocks at two soil depth intervals, topsoil (0-30 cm) and subsoil (30-100 cm), based on both legacy and recent data from 7245 agricultural soil profiles and using environmental drivers (climate, agricultural practices and soil properties) for agricultural soils in Catalonia (NE Spain). Generalized Least Square (GLS) and Geographical Weighted Regression (GWR) were used as modelling approaches to: (i) assess the main SOC stock drivers and their effects on SOC stocks; (ii) analyse spatial variability of SOC stocks and their relationships with the main drivers; and (iii) predict and map SOC stocks at the regional scale. While topsoil variation of SOC stocks depended mainly on climate, soil texture and agricultural variables, subsoil SOC stocks changes depended mainly on soil attributes such us soil texture, clay content, soil type or depth to bedrock. The GWR model revealed that the relationship between SOC stocks and drivers varied spatially. Finally, the study was only able to predict and map topsoil SOC stocks at the regional scale, because controlling factors of SOC stocks at the subsoil level were largely unavailable for digital mapping. According to the resulting map, the mean SOC stock value for Catalan agriculture at the topsoil level was 4.88 ±â€¯0.89 kg/m2 and the total magnitude of the carbon pool in agricultural soils of Catalonia up to 30 cm reached 47.9 Tg. The present study findings are useful for defining carbon sequestration strategies at the regional scale related with agricultural land use changes and agricultural management practices in a context of climate change.

2.
Tree Physiol ; 36(10): 1196-1209, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27217530

RESUMO

Plants exhibit a variety of drought responses involving multiple interacting traits and processes, which makes predictions of drought survival challenging. Careful evaluation of responses within species, where individuals share broadly similar drought resistance strategies, can provide insight into the relative importance of different traits and processes. We subjected Pinus sylvestris L. saplings to extreme drought (no watering) leading to death in a greenhouse to (i) determine the relative effect of predisposing factors and responses to drought on survival time, (ii) identify and rank the importance of key predictors of time to death and (iii) compare individual characteristics of dead and surviving trees sampled concurrently. Time until death varied over 3 months among individual trees (from 29 to 147 days). Survival time was best predicted (higher explained variance and impact on the median survival time) by variables related to carbon uptake and carbon/water economy before and during drought. Trees with higher concentrations of monosaccharides before the beginning of the drought treatment and with higher assimilation rates prior to and during the treatment survived longer (median survival time increased 25-70 days), even at the expense of higher water loss. Dead trees exhibited less than half the amount of nonstructural carbohydrates (NSCs) in branches, stem and relative to surviving trees sampled concurrently. Overall, our results indicate that the maintenance of carbon assimilation to prevent acute depletion of NSC content above some critical level appears to be the main factor explaining survival time of P. sylvestris trees under extreme drought.


Assuntos
Secas , Pinus sylvestris/fisiologia , Carbono/metabolismo , Tempo
3.
Plant Sci ; 239: 15-25, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26398787

RESUMO

The mechanisms of stomatal sensitivity to CO2 are yet to be fully understood. The role of photosynthetic and non-photosynthetic factors in stomatal responses to CO2 was investigated in wild-type barley (Hordeum vulgare var. Graphic) and in a mutant (G132) with decreased photochemical and Rubisco capacities. The CO2 and DCMU responses of stomatal conductance (gs), gas exchange, chlorophyll fluorescence and levels of ATP, with a putative transcript for stomatal opening were analysed. G132 had greater gs than the wild-type, despite lower photosynthesis rates and higher intercellular CO2 concentrations (Ci). The mutant had Rubisco-limited photosynthesis at very high CO2 levels, and higher ATP contents than the wild-type. Stomatal sensitivity to CO2 under red light was lower in G132 than in the wild-type, both in photosynthesizing and DCMU-inhibited leaves. Under constant Ci and red light, stomatal sensitivity to DCMU inhibition was higher in G132. The levels of a SLAH3-like slow anion channel transcript, involved in stomatal closure, decreased sharply in G132. The results suggest that stomatal responses to CO2 depend partly on the balance of photosynthetic electron transport to carbon assimilation capacities, but are partially regulated by the CO2 signalling network. High gs can improve the adaptation to climate change in well-watered conditions.


Assuntos
Dióxido de Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Proteínas de Plantas/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Canais de Ânion Dependentes de Voltagem/genética , Transporte de Elétrons , Hordeum/metabolismo , Luz , Mutação , Fotossíntese , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Estômatos de Plantas/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo
4.
J Hazard Mater ; 260: 176-82, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23747476

RESUMO

Agricultural irrigation water contains a variety of contaminants that can be introduced into the food chain through intake by irrigated crops. This paper describes an experiment under controlled conditions designed to simulate sprinkle irrigation with polluted water at two different relative humidities (40 and 90%). Specifically, shed lettuce-heart leaves were spiked with an aqueous solution containing organic microcontaminants, including pharmaceuticals (ibuprofen, diclofenac, clofibric acid, and carbamazepine), fragrances (tonalide), biocides (triclosan), insecticides (lindane), herbicides (atrazine), phenolic estrogen (bisphenol A), and polycyclic aromatic hydrocarbons (phenanthrene and pyrene). Following an incubation period (48 h), the treated leaves were rinsed with water, and both the solution used to rinse them and the leaves themselves were independently analyzed to investigate the foliar sorption and uptake of the spiked organic contaminants through cuticle. The results showed that the foliar sorption of emerging and priority microcontaminants in leaves wetted by irrigation practices is related to their polarity (logD(ow)) and volatility (logk(H)), regardless of their compound class and the relative humidity. The results thus underscore the need to improve the quality of reclaimed water in crop irrigation, particularly when sprinkle irrigation is used.


Assuntos
Irrigação Agrícola , Folhas de Planta/efeitos dos fármacos , Poluentes Químicos da Água/análise , Produtos Agrícolas , Inocuidade dos Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Umidade , Preparações Farmacêuticas/análise , Análise de Regressão , Fatores de Tempo
5.
Environ Sci Pollut Res Int ; 20(6): 3629-38, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23397176

RESUMO

The use of reclaimed water for agricultural irrigation has emerged as a new strategy for coping with water scarcity in semiarid countries. However, the incorporation of the organic microcontaminants in such water into the diet through crop uptake poses a potential risk to human health. This paper aims to assess the presence of organic microcontaminants in different crops irrigated with groundwater and reclaimed water (secondary or tertiary effluents) in a greenhouse experiment. The determination of microcontaminants in water and vegetation samples was performed by solid-phase extraction and matrix solid-phase dispersion procedure with GC-MS/MS, respectively. The presence of nitrates in the groundwater used for irrigation increased biomass production by a higher proportion than the harvest index. The concentration of microcontaminants in lettuce, carrots, and green beans ranged from less than the limit of quantitation to 571 ng g(-1) (fresh weight). Tributyl phosphate and butylated hydroxyanisole exhibited the highest concentration levels in crops. The concentration and frequency of detection of microcontaminants were lower in green bean pods than in green bean roots and leaves. Although the concentrations were generally low, the simultaneous presence of a variety of microcontaminants should be taken into consideration when assessing the risk to human health.


Assuntos
Irrigação Agrícola , Produtos Agrícolas/metabolismo , Água Subterrânea/química , Poluentes Químicos da Água/metabolismo , Biomassa , Hidroxianisol Butilado/análise , Cromatografia Gasosa , Daucus carota/metabolismo , Monitoramento Ambiental/métodos , Frutas/metabolismo , Lactuca/metabolismo , Nitratos/metabolismo , Organofosfatos/análise , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Análise de Componente Principal , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Águas Residuárias/análise
6.
Plant Cell Environ ; 34(2): 245-60, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20955222

RESUMO

The physiological traits underlying the apparent drought resistance of 'Tomàtiga de Ramellet' (TR) cultivars, a population of Mediterranean tomato cultivars with delayed fruit deterioration (DFD) phenotype and typically grown under non-irrigation conditions, are evaluated. Eight different tomato accessions were selected and included six TR accessions, one Mediterranean non-TR accession (NTR(M)) and a processing cultivar (NTR(O)). Among the TR accessions two leaf morphology types, normal divided leaves and potato-leaf, were selected. Plants were field grown under well-watered (WW) and water-stressed (WS) treatments, with 30 and 10% of soil water capacity, respectively. Accessions were clustered according to the leaf type and TR phenotype under WW and WS, respectively. Correlation among parameters under the different water treatments suggested that potential improvements in the intrinsic water-use efficiency (A(N)/g(s)) are possible without negative impacts on yield. Under WS TR accessions displayed higher A(N)/g(s), which was not due to differences in Rubisco-related parameters, but correlated with the ratio between the leaf mesophyll and stomatal conductances (g(m)/g(s)). The results confirm the existence of differential traits in the response to drought stress in Mediterranean accessions of tomato, and demonstrate that increases in the g(m)/g(s) ratio would allow improvements in A(N)/g(s) in horticultural crops.


Assuntos
Adaptação Fisiológica , Solanum lycopersicum/anatomia & histologia , Solanum lycopersicum/fisiologia , Água/metabolismo , Isótopos de Carbono/análise , Análise por Conglomerados , Desidratação , Secas , Frutas/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Região do Mediterrâneo , Isótopos de Nitrogênio/análise , Fenótipo , Fotossíntese , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Transpiração Vegetal , Ribulose-Bifosfato Carboxilase/metabolismo , Plântula/anatomia & histologia , Plântula/metabolismo , Plântula/fisiologia , Especificidade da Espécie
7.
J Exp Bot ; 62(1): 99-109, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20851906

RESUMO

The role of root systems in drought tolerance is a subject of very limited information compared with above-ground responses. Adjustments to the ability of roots to supply water relative to shoot transpiration demand is proposed as a major means for woody perennial plants to tolerate drought, and is often expressed as changes in the ratios of leaf to root area (A(L):A(R)). Seasonal root proliferation in a directed manner could increase the water supply function of roots independent of total root area (A(R)) and represents a mechanism whereby water supply to demand could be increased. To address this issue, seasonal root proliferation, stomatal conductance (g(s)) and whole root system hydraulic conductance (k(r)) were investigated for a drought-tolerant grape root system (Vitis berlandieri×V. rupestris cv. 1103P) and a non-drought-tolerant root system (Vitis riparia×V. rupestris cv. 101-14Mgt), upon which had been grafted the same drought-sensitive clone of Vitis vinifera cv. Merlot. Leaf water potentials (ψ(L)) for Merlot grafted onto the 1103P root system (-0.91±0.02 MPa) were +0.15 MPa higher than Merlot on 101-14Mgt (-1.06±0.03 MPa) during spring, but dropped by approximately -0.4 MPa from spring to autumn, and were significantly lower by -0.15 MPa (-1.43±0.02 MPa) than for Merlot on 101-14Mgt (at -1.28±0.02 MPa). Surprisingly, g(s) of Merlot on the drought-tolerant root system (1103P) was less down-regulated and canopies maintained evaporative fluxes ranging from 35-20 mmol vine(-1) s(-1) during the diurnal peak from spring to autumn, respectively, three times greater than those measured for Merlot on the drought-sensitive rootstock 101-14Mgt. The drought-tolerant root system grew more roots at depth during the warm summer dry period, and the whole root system conductance (k(r)) increased from 0.004 to 0.009 kg MPa(-1) s(-1) during that same time period. The changes in k(r) could not be explained by xylem anatomy or conductivity changes of individual root segments. Thus, the manner in which drought tolerance was conveyed to the drought-sensitive clone appeared to arise from deep root proliferation during the hottest and driest part of the season, rather than through changes in xylem structure, xylem density or stomatal regulation. This information can be useful to growers on a site-specific basis in selecting rootstocks for grape clonal material (scions) grafted to them.


Assuntos
Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Vitis/crescimento & desenvolvimento , Água/metabolismo , Fenômenos Biofísicos , Secas , Raízes de Plantas/metabolismo , Estações do Ano , Vitis/química , Vitis/metabolismo
8.
Rapid Commun Mass Spectrom ; 23(2): 282-90, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19072866

RESUMO

Despite their relevancy, long-term studies analyzing elevated CO(2) effect in plant production and carbon (C) management on slow-growing plants are scarce. A special chamber was designed to perform whole-plant above-ground gas-exchange measurements in two slow-growing plants (Chamaerops humilis and Cycas revoluta) exposed to ambient (ca. 400 micromol mol(-1)) and elevated (ca. 800 micromol mol(-1)) CO(2) conditions over a long-term period (20 months). The ambient isotopic (13)C/(12)C composition (delta(13)C) of plants exposed to elevated CO(2) conditions was modified (from ca. -12.8 per thousand to ca. -19.2 per thousand) in order to study carbon allocation in leaf, shoot and root tissues. Elevated CO(2) increased plant growth by ca. 45% and 60% in Chamaerops and Cycas, respectively. The whole-plant above-ground gas-exchange determinations revealed that, in the case of Chamaerops, elevated CO(2) decreased the photosynthetic activity (determined on leaf area basis) as a consequence of the limited ability to increase C sink strength. On the other hand, the larger C sink strength (reflected by their larger CO(2) stimulatory effect on dry mass) in Cycas plants exposed to elevated CO(2) enabled the enhancement of their photosynthetic capacity. The delta(13)C values determined in the different plant tissues (leaf, shoot and root) suggest that Cycas plants grown under elevated CO(2) had a larger ability to export the excess leaf C, probably to the main root. The results obtained highlighted the different C management strategies of both plants and offered relevant information about the potential response of two slow-growing plants under global climate change conditions.


Assuntos
Arecaceae/fisiologia , Dióxido de Carbono/administração & dosagem , Dióxido de Carbono/fisiologia , Cycas/fisiologia , Ecossistema , Exposição Ambiental , Espectrometria de Massas/métodos , Fotossíntese/fisiologia , Arecaceae/efeitos dos fármacos , Carbono/análise , Cycas/efeitos dos fármacos , Marcação por Isótopo/métodos , Fotossíntese/efeitos dos fármacos
9.
J Plant Res ; 118(4): 263-9, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16044197

RESUMO

Tissue-water relations were used to characterize the responses of two Mediterranean co-occurring woody species (Quercus ilex L. and Phillyrea latifolia L.) to seasonal and experimental drought conditions. Soil water availability was reduced approximately 15% by partially excluding rain throughfall and lateral flow (water runoff). Seasonal and experimental drought elicited physiological and morphological adaptations other than osmotic adjustment: both species showed large increases in cell-wall elasticity and decreased saturated-to-dry-mass ratio. Increased elasticity (lower elastic modulus) resulted in concurrent decreases in relative water content at turgor loss. In addition, P. latifolia showed significant increases in apoplastic water fraction. Decreased saturated-to-dry-mass ratio and increased apoplastic water fraction were accompanied by an increased range of turgor maintenance, which indicates that leaf sclerophyllous traits might be advantageous in drier scenarios. In contrast, the degree of sclerophylly (as assessed by the leaf mass-to-area ratio) was not related to tissue elasticity. An approximately 15% reduction in soil water availability resulted in significant reductions in diameter growth when compared to control plants in both species. Moreover, although P. latifolia underwent larger changes in tissue water-related traits than Q. ilex in response to decreasing water availability, growth was more sensitive to water stress in P. latifolia than in Q. ilex. Differences in diameter growth between species might be partially linked to the effects of cell-wall elasticity and turgor pressure on growth, since Q. ilex showed higher tissue elasticity and higher intrinsic tolerance to water deficit (as indicated by lower relative water content at turgor loss) than P. latifolia.


Assuntos
Adaptação Fisiológica , Desastres , Oleaceae/fisiologia , Quercus/fisiologia , Estações do Ano , Água/metabolismo , Oleaceae/crescimento & desenvolvimento , Oleaceae/metabolismo , Quercus/crescimento & desenvolvimento , Quercus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...