Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 51(17): 6587-6596, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35315857

RESUMO

Selective ruthenium-catalyzed oxidation of lignin diol model compounds and lignin was accomplished by a transfer hydrogenation methodology. The developed procedure allows us to selectively oxidize benzylic secondary alcohols in model diols and spruce milled wood lignin in the presence of a commercially available Shvo catalyst under aerobic conditions. Six ketoalcohols were obtained in 70-92% yields from the model compounds, which also included lignin monomers containing 5-5' and ß-O-4 linkages. The developed method can be used as an intermediate step for the introduction of new functional groups into lignin-type structures and lignin to allow their further modifications.


Assuntos
Lignina , Rutênio , Álcoois/química , Catálise , Hidrogenação , Lignina/química , Rutênio/química
2.
Dalton Trans ; 50(18): 6088-6099, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33973597

RESUMO

Six known aminophenolate vanadium complexes V1-V6 were examined in 3,5-di-tert-butylcatechol (1, 3,5-DTBC) oxidation. From the complexes V1-V5 have been previously shown to demonstrate catechol oxidase (catecholase) like behavior, catalytically oxidizing 1 to 3,5-di-tert-butyl-1,2-benzoquinone (2, 3,5-DTBQ). A critical re-evaluation of V1-V5, including V6 not assessed earlier, in the aerobic oxidation of 1 has revealed that several catechol dioxygenase products are obtained in addition to 2, which is produced partly by autoxidation. Mechanistic investigations into the V1-V6 catalyzed oxidation of 1 by EPR, negative mode ESI-MS and 51V NMR, in addition to semi-quantitative product distribution analyses with GC and column chromatography afford compelling evidence in support of the "common catalyst hypothesis" earlier proposed by Finke and co-workers. During the reaction, V1-V6 are partially converted in situ by H2O2 assisted leaching to vanadium catecholate complexes [V(3,5-DTBC)2(3,5-DTBSQ˙)] and [VO(3,5-DTBC)(3,5-DTBSQ˙)], where 3,5-DTBSQ˙ = 3,5-di-tert-butyl-1,2-semiquinone, the latter of which has been implicated as the common true active catalyst in catechol dioxygenation as per the common catalyst hypothesis. The results herein suggest that vanadium aminophenolate complexes are sensitive to H2O2 mediated leaching in the presence of strong σ and π donating ligands such as 1 and 2. Furthermore, based on these results, the use of vanadium aminophenolate complexes as catechol oxidase mimics is not as warranted as previously understood.

3.
Chemistry ; 27(17): 5344-5378, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33125790

RESUMO

Isoindolinone structure is an important privileged scaffold found in a large variety of naturally occurring as well as synthetic, biologically and pharmaceutically active compounds. Owing to its crucial role in a number of applications, the synthetic methodologies for accessing this heterocyclic skeleton have received significant attention during the past decade. In general, the synthetic strategies can be divided into two categories: First, direct utilization of phthalimides or phthalimidines as starting materials for the synthesis of isoindolinones; and second, construction of the lactam and/or aromatic rings by different catalytic methods, including C-H activation, cross-coupling, carbonylation, condensation, addition and formal cycloaddition reactions. Especially in the last mentioned, utilization of transition metal catalysts provides access to a broad range of substituted isoindolinones. Herein, the recent advances (2010-2020) in transition metal catalyzed synthetic methodologies via formation of new C-C bonds for isoindolinones are reviewed.

4.
ChemSusChem ; 8(16): 2670-80, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26197759

RESUMO

Amidation of renewable feedstocks, such as fatty acids, esters, and Chlorella alga based biodiesel, was demonstrated with zeolites and mesoporous materials as catalysts and ethanolamine, alaninol, and leucinol. The last two can be derived from amino acids present in alga. The main products were fatty alkanol amides and the corresponding ester amines, as confirmed by NMR and IR spectroscopy. Thermal amidation of technical-grade oleic acid and stearic acid at 180 °C with ethanolamine were non-negligible; both gave 61% conversion. In the amidation of stearic acid with ethanolamine, the conversion over H-Beta-150 was 80% after 3 h, whereas only 63% conversion was achieved for oleic acid; this shows that a microporous catalyst is not suitable for this acid and exhibits a wrinkled conformation. The highest selectivity to stearoyl ethanolamide of 92% was achieved with mildly acidic H-MCM-41 at 70% conversion in 3 h at 180 °C. Highly acidic catalysts favored the formation of the ester amine, whereas the amide was obtained with a catalyst that exhibited an optimum acidity. The conversion levels achieved with different fatty acids in the range C12-C18 were similar; this shows that the fatty acid length does not affect the amidation rate. The amidation of methyl palmitate and biodiesel gave low conversions over an acidic catalyst, which suggested that the reaction mechanism in the amidation of esters was different.


Assuntos
Clorófitas/química , Etanolamina/química , Ácidos Graxos/química , Leucina/análogos & derivados , Propanolaminas/química , Amidas/química , Leucina/química , Preparações Farmacêuticas/química , Dióxido de Silício/química , Ácidos Sulfúricos/química , Tensoativos/química , Zeolitas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...