Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(19)2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37830629

RESUMO

The proximal caudal vertebrae and notochord in thick-toed geckos (TG) (Chondrodactylus turneri, Gray, 1864) were investigated after a 30-day space flight onboard the biosatellite Bion-M1. This region has not been explored in previous studies. Our research focused on finding sites most affected by demineralization caused by microgravity (G0). We used X-ray phase-contrast tomography to study TG samples without invasive prior preparation to clarify our previous findings on the resistance of TG's bones to demineralization in G0. The results of the present study confirmed that geckos are capable of preserving bone mass after flight, as neither cortical nor trabecular bone volume fraction showed statistically significant changes after flight. On the other hand, we observed a clear decrease in the mineralization of the notochordal septum and a substantial rise in intercentrum volume following the flight. To monitor TG's mineral metabolism in G0, we propose to measure the volume of mineralized tissue in the notochordal septum. This technique holds promise as a sensitive approach to track the demineralization process in G0, given that the volume of calcification within the septum is limited, making it easy to detect even slight changes in mineral content.


Assuntos
Lagartos , Voo Espacial , Animais , Microtomografia por Raio-X , Cóccix , Raios X , Minerais
2.
Med Phys ; 50(3): 1601-1613, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36309985

RESUMO

BACKGROUND: The formation of concrements in human pineal gland (PG) is a physiological process and, according to many researchers, is associated with the involution of PG structures. The majority of scientific publications concern progressive calcification of PG, leaving out studies on the destruction of already formed calcified concrements. Our study fills the gap in knowledge about calcified zones destruction in PG in normal aging and neuropathological conditions, which has not been addressed until now. PURPOSE: Our objective is to gain insight into human PG tissue impairment in both normal aging and neurodegenerative conditions. X-ray phase-contrast tomography (XPCT) allowed us to study PG tissue degeneration at high spatial resolution and, for the first time, to examine the damaged PG concrements in detail. Our research finding could potentially enhance the understanding of the PG involvement in the process of aging as well as in Alzheimer's disease (AD) and vascular dementia (VD). METHODS: The research was carried out on human PG autopsy material in normal aging, VD, and AD conditions. Laboratory-based micro-computed tomography (micro-CT) was used to collect and evaluate samples of native, uncut, and unstained PG with different degrees of pineal calcification. The detailed high-resolution 3D images of the selected PGs were produced using synchrotron-based XPCT. Histology and immunohistochemistry of soft PG tissue confirmed XPCT results. RESULTS: We performed via micro-CT the evaluation of the morphometric parameters of PG such as total sample volume, calcified concrements volume, and percentage of concrements in the total volume of the sample. XPCT imaging revealed high-resolution details of age-related PG alteration. In particular, we noted signs of moderate degradation of concrements in some PGs from elderly donors. In addition, our analysis revealed noticeable degenerative change in both concrements and soft tissue of PGs with neuropathology. In particular, we observed a hollow core and separated layers as well as deep ragged cracks in PG concrements of AD and VD samples. In parenchyma of some samples, we detected wide pinealocyte-free fluid-filled areas adjacent to the calcified zones. CONCLUSION: The present work provides the basis for future scientific research focused on the dynamic nature of PG calcium deposits and PG soft tissue in normal aging and neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Calcinose , Doenças Neurodegenerativas , Glândula Pineal , Humanos , Idoso , Glândula Pineal/diagnóstico por imagem , Glândula Pineal/metabolismo , Glândula Pineal/patologia , Microtomografia por Raio-X , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Calcinose/diagnóstico por imagem , Calcinose/patologia
3.
Ann Anat ; 240: 151880, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34896557

RESUMO

BACKGROUND: The sympathetic nervous system plays an important role in the regulation of pancreatic exocrine and endocrine secretion. The results of experimental studies also demonstrate the involvement of the sympathetic nervous system in the regulation of endocrine cell differentiation and islet formation during the development of the pancreas. However, the prenatal development of sympathetic innervation of the human pancreas has not yet been studied. MATERIAL AND METHODS: Pancreatic autopsy samples from 24 human fetuses were examined using immunohistochemistry with antibodies to tyrosine hydroxylase (TH). The density, concentration, and size (width, length, perimeter and area) of the TH-positive sympathetic nerves were compared in four developmental periods: pre-fetal (8-11 weeks post conception (w.p.c.), n = 6), early fetal (13-20 gestational weeks (g.w.), n = 7), middle fetal (21-28 g.w., n = 6) and late fetal (29-40 g.w., n = 5) using morphometric methods and statistical analysis (Multiple Comparisons p values). Double immunofluorescence with antibodies to TH and either insulin or glucagon and confocal microscopy were applied to analyze the interaction between the sympathetic nerves and endocrine cells, and the co-localization of TH with hormones. RESULTS: TH-positive sympathetic nerves were detected in the fetal pancreas starting from the early stages (8 w.p.c.). The developmental dynamics of sympathetic nerves was follows: from the pre-fetal period, the amount of TH-positive nerves gradually increased and their branching occurred reaching the highest density and concentration in the middle fetal period, followed by a decrease in these parameters in the late fetal period. From the 14th g.w. onwards, thin TH-positive nerve fibers were mainly distributed in the vicinity of blood vessels and around the neurons of intrapancreatic ganglia, which is similar in adults. There were only rare TH-positive nerve fibers adjacent to acini or located at the periphery of some islets. The close interactions between the TH-positive nerve fibers and endocrine cells were observed in the neuro-insular complexes. Additionally, non-neuronal TH-containing cells were found in the pancreas of fetuses from the pre-fetal and early fetal periods. Some of these cells simultaneously contained glucagon. CONCLUSIONS: The results demonstrate that sympathetic innervation of the human pancreas, including the formation of perivascular and intraganglionic nerve plexuses, extensively develops during prenatal period, while some processes, such as the formation of sympathetic innervation of islet capillaries, may occur postnatally. Non-neuronal TH-containing cells, as well as the interactions between the sympathetic terminals and endocrine cells observed in the fetal pancreas may be necessary for endocrine pancreas development in humans.


Assuntos
Pâncreas , Tirosina 3-Mono-Oxigenase , Feminino , Glucagon , Humanos , Fibras Nervosas , Neurônios , Gravidez
4.
Front Physiol ; 12: 752893, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950047

RESUMO

The Mongolian gerbil displays unique physiological and anatomical features that make this species an attractive object for biological experiments in space. However, until recently, the Mongolian gerbil has remained a novel, mostly unstudied animal model in investigating bone loss in weightlessness (G0). After 12 days of orbital Foton-M3 mission, the humerus of Mongolian gerbils has been studied here via micro-computed tomography (micro-CT) to quantify bone morphometric parameters. The samples from the flight group, delayed synchronous ground-control group, and basal control group were investigated, and main morphometric parameters were reported in the article. The accurate selection of a region of interest is an essential step for a correct assessment of bone parameters. We proposed a new, easy and efficient method for delimiting the bone's basic regions in the humerus. It is based on quantitative estimation of X-ray attenuation in the cortical bone as a function of humerus bone length. The micro-CT analysis of the basic bone regions revealed a difference in bone morphometric parameters between the flight and control gerbils. The most significant bone loss was observed in the cortical part of the proximal humeral zone in the flight group. No statistically significant changes of volume fraction in the cancellous tissue of proximal and distal epiphyses and metaphyses were observed. A statistically significant increase in both cancellous bone volume and bone X-ray attenuation in the flight group was detected in the proximal part of the diaphyses. We assume that enhanced calcium deposition in the diaphyseal cancellous tissue occurred due to a bone response to G0 conditions.

5.
Acta Histochem ; 121(5): 638-645, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31146895

RESUMO

In the human pancreas, various forms of endocrine cell arrangement are found: single endocrine cells, endocrine cell clusters, and mantel, bipolar and mosaic cell (mixed) islets. Our aim was to analyse the distribution and dynamics of insulin-, glucagon- and somatostatin-containing cells within the various forms of endocrine pancreas arrangement during human prenatal development and in adults and to suggest a mechanism of change in the endocrine cell ratio in adult islets. Pancreatic autopsies derived from human foetuses from the 10th to the 40th weeks of development and from adults were examined using histological, immunohistochemical and morphometric methods. During development, the human endocrine pancreas undergoes not only de novo differentiation of endocrine cells and islet formation, but morphogenetic restructuring, which is revealed as a change of the α-, ß- and δ-cell ratio in the islets. In particular, increased proportion of glucagon- and somatostatin-containing cells and decreased proportion of ß-cells were shown in the largest mosaic islets in adults. Our results indicate that the distribution and proportion of α-, ß- and δ-cells depend on the islets size and vascularisation. Studying of the mechanism of such restructuring may contribute to the development of new approaches in the treatment of diabetes mellitus.


Assuntos
Células Secretoras de Glucagon/citologia , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/embriologia , Pâncreas/citologia , Células Secretoras de Somatostatina/citologia , Desenvolvimento Embrionário , Humanos
6.
Early Hum Dev ; 117: 44-49, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29275072

RESUMO

BACKGROUND: Expression of the intermediate filament protein vimentin has been recently observed in the pancreatic islet ß- and α-cells of humans with type 2 diabetes mellitus. It was suggested that the presence of vimentin in endocrine cells may indicate islet tissue renewal, or potentially represent the dedifferentiation of endocrine cells, which could contribute to the onset of type 2 diabetes or islet cell dysfunction. AIM: To analyze the expression of vimentin in pancreatic ß- and α-cells of macrosomic infants of diabetic and nondiabetic mothers. SUBJECTS: Pancreatic samples of five macrosomic infants (gestational age 34-40weeks) from three diabetic and two nondiabetic mothers were compared to six control infants (32-40weeks, weight appropriate for gestational age) from normoglycemic mothers. METHODS: Pancreatic autopsy samples were examined by double immunofluorescent labeling with antibodies against vimentin and either insulin or glucagon. Alterations in the endocrine pancreas were measured using morphometric methods, then data were statistically analyzed. RESULTS: In the pancreatic islets of macrosomic infants from diabetic and nondiabetic mothers, we observed vimentin-positive cells, some of which simultaneously contained insulin or glucagon. We also quantitatively showed that the presence of such cells was associated with hypertrophy and hyperplasia of the islets, and with an increase in ß- and α-cell density. CONCLUSIONS: We speculate that the appearance of vimentin-positive islet cells may reflect induction of differentiation in response to the increased insulin demand, and vimentin may serve as an early marker of endocrine pancreas disorders.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Macrossomia Fetal/metabolismo , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Gravidez em Diabéticas/metabolismo , Vimentina/metabolismo , Adulto , Biomarcadores/metabolismo , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/patologia , Feminino , Macrossomia Fetal/patologia , Humanos , Recém-Nascido , Masculino , Gravidez , Gravidez em Diabéticas/patologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-24795697

RESUMO

The ontogeny of the neuro-insular complexes (NIC) and the islets innervation in human pancreas has not been studied in detail. Our aim was to describe the developmental dynamics and distribution of the nervous system structures in the endocrine part of human pancreas. We used double-staining with antibodies specific to pan-neural markers [neuron-specific enolase (NSE) and S100 protein] and to hormones of pancreatic endocrine cells. NSE and S100-positive nerves and ganglia were identified in the human fetal pancreas from gestation week (gw) 10 onward. Later the density of S100 and NSE-positive fibers increased. In adults, this network was sparse. The islets innervation started to form from gw 14. NSE-containing endocrine cells were identified from gw 12 onward. Additionally, S100-positive cells were detected both in the periphery and within some of the islets starting at gw 14. The analysis of islets innervation has shown that the fetal pancreas contained NIC and the number of these complexes was reduced in adults. The highest density of NIC is detected during middle and late fetal periods, when the mosaic islets, typical for adults, form. The close integration between the developing pancreatic islets and the nervous system structures may play an important role not only in the hormone secretion, but also in the islets morphogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...