Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photosynth Res ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865029

RESUMO

Photostasis is the light-dependent maintenance of energy balance associated with cellular homeostasis in photoautotrophs. We review evidence that illustrates how photosynthetic adaptation in polar photoautrophs such as aquatic green algae, cyanobacteria, boreal conifers as well as terrestrial angiosperms exhibit an astonishing plasticity in structure and function of the photosynthetic apparatus. This plasticity contributes to the maintenance of photostasis, which is essential for the long-term survival in the seemingly inhospitable Antarctic and Arctic habitats. However, evidence indicates that polar photoautrophic species exhibit different functional solutions for the maintenance of photostasis. We suggest that this reflects, in part, the genetic diversity symbolized by inherent genetic redundancy characteristic of polar photoautotrophs which enhances their survival in a thermodynamically challenging environment.

2.
Planta ; 255(2): 36, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35015152

RESUMO

MAIN CONCLUSION: Decreased PG constrains PSI activity due to inhibition of transcript and polypeptide abundance of light-harvesting and reaction center polypeptides generating a reversible, yellow phenotype during cold acclimation of pgp1. Cold acclimation of the Arabidopsis pgp1 mutant at 5 °C resulted in a pale-yellow phenotype with abnormal chloroplast ultrastructure compared to its green phenotype upon growth at 20 °C despite a normal cold-acclimation response at the transcript level. In contrast, wild type maintained its normal green phenotype and chloroplast ultrastructure irrespective of growth temperature. In contrast to cold acclimation of WT, growth of pgp1 at 5 °C limited the accumulation of Lhcbs and Lhcas assessed by immunoblotting. However, a novel 43 kD polypeptide of Lhcb1 as well as a 29 kD polypeptide of Lhcb3 accumulated in the soluble fraction which was absent in the thylakoid membrane fraction of cold-acclimated pgp1 which was not observed in WT. Cold acclimation of pgp1 destabilized the Chl-protein complexes associated with PSI and predisposed energy distribution in favor of PSII rather than PSI compared to the WT. Functionally, in vivo PSI versus PSII photochemistry was inhibited in cold-acclimated pgp1 to a greater extent than in WT relative to controls. Greening of the pale-yellow pgp1 was induced when cold-acclimated pgp1 was shifted from 5 to 20 °C which resulted in a marked decrease in excitation pressure to a level comparable to WT. Concomitantly, Lhcbs and Lhcas accumulated with a simultaneous decrease in the novel 43 and 29kD polypeptides. We conclude that the reduced levels of phosphatidyldiacylglycerol in the pgp1 limit the capacity of the mutant to maintain the structure and function of its photosynthetic apparatus during cold acclimation. Thus, maintenance of normal thylakoid phosphatidyldiacylglycerol levels is essential to stabilize the photosynthetic apparatus during cold acclimation.


Assuntos
Arabidopsis , Fotossíntese , Aclimatação , Arabidopsis/genética , Arabidopsis/metabolismo , Clorofila , Temperatura Baixa , Complexos de Proteínas Captadores de Luz , Peptídeos , Fotoquímica , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
3.
Int J Mol Sci ; 14(6): 12729-63, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23778089

RESUMO

Cold acclimation of winter cereals and other winter hardy species is a prerequisite to increase subsequent freezing tolerance. Low temperatures upregulate the expression of C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB1) which in turn induce the expression of COLD-REGULATED (COR) genes. We summarize evidence which indicates that the integration of these interactions is responsible for the dwarf phenotype and enhanced photosynthetic performance associated with cold-acclimated and CBF-overexpressing plants. Plants overexpressing CBFs but grown at warm temperatures mimic the cold-tolerant, dwarf, compact phenotype; increased photosynthetic performance; and biomass accumulation typically associated with cold-acclimated plants. In this review, we propose a model whereby the cold acclimation signal is perceived by plants through an integration of low temperature and changes in light intensity, as well as changes in light quality. Such integration leads to the activation of the CBF-regulon and subsequent upregulation of COR gene and GA 2-oxidase (GA2ox) expression which results in a dwarf phenotype coupled with increased freezing tolerance and enhanced photosynthetic performance. We conclude that, due to their photoautotrophic nature, plants do not rely on a single low temperature sensor, but integrate changes in light intensity, light quality, and membrane viscosity in order to establish the cold-acclimated state. CBFs appear to act as master regulators of these interconnecting sensing/signaling pathways.


Assuntos
Aclimatação/fisiologia , Cloroplastos/metabolismo , Temperatura Baixa , Fitocromo/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Oxirredução
4.
Planta ; 236(5): 1639-52, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22847022

RESUMO

The effects of cold acclimation and long-term elevated CO(2) on photosynthetic performance of wild-type (WT) and BnCBF17-over-expressing line of Brassica napus cv. Westar (BnCBF17-OE) grown at either 20/16 °C (non-acclimated) or 5/5 °C (cold acclimated) and at either ambient (380 µmol C mol(-1)) or elevated (700 µmol C mol(-1)) CO(2) were studied. Compared with non-acclimated WT, the BnCBF17-OE grown at 20 °C mimicked the effects of cold acclimation on WT B. napus with respect to compact dwarf phenotype and increased rates of light-saturated CO(2) assimilation and photosynthetic electron transport. This was associated with enhanced energy conversion efficiency into biomass as assessed by decreased excitation pressure coupled to decreased dependence on non-photochemical energy dissipation for a given irradiance. Growth at elevated CO(2) decreased the light and CO(2)-saturated rates of photosynthesis by 30 % for non-acclimated WT relative to growth at ambient CO(2). This was associated with inhibition in electron transport rates (20 %), decrease in amount of rbcL (35 %) and cytosolic FBPase (70 %) and increased excitation pressure and non-photochemical quenching in elevated versus ambient CO(2)-grown non-acclimated WT. In contrast, light and CO(2)-saturated rates of photosynthesis, electron transport, excitation pressure, non-photochemical quenching and levels of rbcL, cytosolic FBPase and Lhcb1 were insensitive to growth under elevated CO(2) in BnCBF17-OE and cold-acclimated WT. Thus, BnCBF17-over-expression and cold acclimation maintain enhanced energy conversion efficiency and reduced sensitivity to feedback-limited photosynthesis during long-term growth of B. napus under elevated CO(2). Our results indicated that CBFs transcription factors regulate not only freezing tolerance but also has major whole plant effects.


Assuntos
Aclimatação , Brassica napus/fisiologia , Dióxido de Carbono , Fotossíntese/fisiologia , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Dióxido de Carbono/farmacologia , Clorofila/metabolismo , Clorofila A , Temperatura Baixa , Transporte de Elétrons , Metabolismo Energético , Luz , Proteínas de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas
5.
Physiol Plant ; 144(2): 169-88, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21883254

RESUMO

The contributions of phenotypic plasticity to photosynthetic performance in winter (cv Musketeer, cv Norstar) and spring (cv SR4A, cv Katepwa) rye (Secale cereale) and wheat (Triticum aestivum) cultivars grown at either 20°C [non-acclimated (NA)] or 5°C [cold acclimated (CA)] were assessed. The 22-40% increase in light-saturated rates of CO2 assimilation in CA vs NA winter cereals were accounted for by phenotypic plasticity as indicated by the dwarf phenotype and increased specific leaf weight. However, phenotypic plasticity could not account for (1) the differential temperature sensitivity of CO2 assimilation and photosynthetic electron transport, (2) the increased efficiency and light-saturated rates of photosynthetic electron transport or (3) the decreased light sensitivity of excitation pressure and non-photochemical quenching between NA and NA winter cultivars. Cold acclimation decreased photosynthetic performance of spring relative to winter cultivars. However, the differences in photosynthetic performances between CA winter and spring cultivars were dependent upon the basis on which photosynthetic performance was expressed. Overexpression of BNCBF17 in Brassica napus generally decreased the low temperature sensitivity (Q10) of CO2 assimilation and photosynthetic electron transport even though the latter had not been exposed to low temperature. Photosynthetic performance in wild type compared to the BNCBF17-overexpressing transgenic B. napus indicated that CBFs/DREBs regulate not only freezing tolerance but also govern plant architecture, leaf anatomy and photosynthetic performance. The apparent positive and negative effects of cold acclimation on photosynthetic performance are discussed in terms of the apparent costs and benefits of phenotypic plasticity, winter survival and reproductive fitness.


Assuntos
Brassica napus/anatomia & histologia , Brassica napus/fisiologia , Fotossíntese , Secale/anatomia & histologia , Secale/fisiologia , Triticum/anatomia & histologia , Triticum/fisiologia , Aclimatação/efeitos dos fármacos , Aclimatação/efeitos da radiação , Biomassa , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacologia , Isótopos de Carbono , Clorofila/metabolismo , Clorofila A , Temperatura Baixa , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Peptídeos/metabolismo , Fenótipo , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Estômatos de Plantas/ultraestrutura , Transpiração Vegetal/efeitos dos fármacos , Transpiração Vegetal/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estações do Ano , Secale/genética , Secale/crescimento & desenvolvimento , Temperatura , Triticum/genética , Triticum/crescimento & desenvolvimento , Água/fisiologia
6.
Plant Cell Physiol ; 52(6): 1042-54, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21546369

RESUMO

Cold-induced inhibition of CO(2) assimilation in maize (Zea mays L.) is associated with a persistent depression of the photochemical efficiency of PSII. However, very limited information is available on PSI photochemistry and PSI-dependent electron flow in cold-stressed maize. The extent of the absorbance change (ΔA(820)) used for in vivo quantitative estimation of photooxidizable P700(+) indicated a 32% lower steady-state oxidation level of the PSI reaction center P700 (P700(+)) in cold-stressed compared with control maize leaves. This was accompanied by a 2-fold faster re-reduction rate of P700(+) in the dark, indicating a higher capacity for cyclic electron flow (CEF) around PSI in cold-stressed maize leaves. Furthermore, the increased PSI-dependent CEF(s) was associated with a much higher stromal electron pool size and 56% lower capacity for state transitions compared with control plants. To examine NADP(H) dehydrogenase (NDH)- and ferredoxin:plastoquinone oxidoreductase (FQR)-dependent CEF in vivo, the post-illumination transient increase of F(o)' was measured in the presence of electron transport inhibitors. The results indicate that under optimal growth conditions the relatively low CEF in the maize mesophyll cells is mostly due to the NDH-dependent pathway. However, the increased CEF in cold-stressed plants appears to originate from the up-regulated FQR pathway. The physiological role of PSI down-regulation, the increased capacity for CEF and the shift of preferred CEF mode in modulating the photosynthetic electron fluxes and distribution of excitation light energy in maize plants under cold stress conditions are discussed.


Assuntos
Temperatura Baixa , NADPH Desidrogenase/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Estresse Fisiológico , Zea mays/fisiologia , Antimicina A/farmacologia , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Escuridão , Transporte de Elétrons , Ferredoxina-NADP Redutase/efeitos dos fármacos , Ferredoxina-NADP Redutase/metabolismo , Fluorescência , Cloreto de Mercúrio/farmacologia , Células do Mesofilo/efeitos dos fármacos , Células do Mesofilo/metabolismo , Células do Mesofilo/fisiologia , NADPH Desidrogenase/efeitos dos fármacos , Oxirredução , Oxigênio/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema I/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Tilacoides/efeitos dos fármacos , Tilacoides/metabolismo , Tilacoides/fisiologia , Zea mays/efeitos dos fármacos , Zea mays/metabolismo
7.
Plant Cell Physiol ; 51(9): 1555-70, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20630988

RESUMO

Second year needles of Lodgepole pine (Pinus contorta L.) were exposed for 6 weeks to either simulated control summer ['summer'; 25 °C/250 photon flux denisty (PFD)], autumn ('autumn'; 15°C/250 PFD) or winter conditions ('winter'; 5 °C/250 PFD). We report that the proportion of linear electron transport utilized in carbon assimilation (ETR(CO2)) was 40% lower in both 'autumn' and 'winter' pine when compared with the 'summer' pine. In contrast, the proportion of excess photosynthetic linear electron transport (ETR(excess)) not used for carbon assimilation within the total ETR(Jf) increased by 30% in both 'autumn' and 'winter' pine. In 'autumn' pine acclimated to 15°C, the increased amounts of 'excess' electrons were directed equally to 21 kPa O2-dependent and 2 kPa O2-dependent alternative electron transport pathways and the fractions of excitation light energy utilized by PSII photochemistry (Φ(PSII)), thermally dissipated through Φ(NPQ) and dissipated by additional quenching mechanism(s) (Φ(f,D)) were similar to those in 'summer' pine. In contrast, in 'winter' needles acclimated to 5 °C, 60% of photosynthetically generated 'excess' electrons were utilized through the 2 kPa O2-dependent electron sink and only 15% by the photorespiratory (21 kPa O2) electron pathway. Needles exposed to 'winter' conditions led to a 3-fold lower Φ(PSII), only a marginal increase in Φ(NPQ) and a 2-fold higher Φ(f,D), which was O2 dependent compared with the 'summer' and 'autumn' pine. Our results demonstrate that the employment of a variety of alternative pathways for utilization of photosynthetically generated electrons by Lodgepole pine depends on the acclimation temperature. Furthermore, dissipation of excess light energy through constitutive non-photochemical quenching mechanisms is O2 dependent.


Assuntos
Aclimatação/fisiologia , Temperatura Baixa , Oxigênio/metabolismo , Fotossíntese , Pinus/fisiologia , Carbono/metabolismo , Clorofila/química , Transporte de Elétrons , Fluorescência , Estações do Ano
8.
Funct Plant Biol ; 36(1): 37-49, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32688625

RESUMO

Analysis of the partitioning of absorbed light energy within PSII into fractions utilised by PSII photochemistry (ΦPSII), thermally dissipated via ΔpH- and zeaxanthin-dependent energy quenching (ΦNPQ) and constitutive non-photochemical energy losses (Φf,D) was performed in control and cold-stressed maize (Zea mays L.) leaves. The estimated energy partitioning of absorbed light to various pathways indicated that the fraction of ΦPSII was twofold lower, whereas the proportion of thermally dissipated energy through ΦNPQ was only 30% higher, in cold-stressed plants compared with control plants. In contrast, Φf,D, the fraction of absorbed light energy dissipated by additional quenching mechanism(s), was twofold higher in cold-stressed leaves. Thermoluminescence measurements revealed that the changes in energy partitioning were accompanied by narrowing of the temperature gap (ΔTM) between S2/3QB- and S2QA- charge recombinations in cold-stressed leaves to 8°C compared with 14.4°C in control maize plants. These observations suggest an increased probability for an alternative non-radiative P680+QA- radical pair recombination pathway for energy dissipation within the reaction centre of PSII in cold-stressed maize plants. This additional quenching mechanism might play an important role in thermal energy dissipation and photoprotection when the capacity for the primary, photochemical (ΦPSII) and zeaxanthin-dependent non-photochemical quenching (ΦNPQ) pathways are thermodynamically restricted in maize leaves exposed to cold temperatures.

9.
Biochem Cell Biol ; 85(5): 616-27, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17901903

RESUMO

Cytochrome f from the psychrophile Chlamydomonas raudensis UWO 241 has a lower thermostability of its c-type heme and an apparent molecular mass that is 7 kDa lower than that of the model mesophilic green alga Chlamydomonas reinhardtii. We combined chloroplast transformation, site-directed mutagensis, and the creation of chimeric fusion constructs to assess the contribution of specific domains and (or) amino acids residues to the structure, stability, and accumulation of cytochrome f, as well as its function in photosynthetic intersystem electron transport. We demonstrate that differences in the amino acid sequence of the small domain and specific charged amino acids in the large domain of cytochrome f alter the physical properties of this protein but do not affect either the thermostability of the c-type heme, the apparent half-life of cytochrome f in the presence of the chloroplastic protein synthesis inhibitor chloramphenicol, or the capacity for photosynthetic intersystem electron transport, measured as e-/P700. However, pulse-labeling with [14C]acetate, combined with immunoblotting, indicated that the negative autoregulation of cytochrome f accumulation observed in mesophilic C. reinhardtii transformed with chimeric constructs from the psychrophile was likely the result of the defective association of the chimeric forms of cytochrome f with the other subunits of the cytochrome b6/f complex native to the C. reinhardtii wild type. These results are discussed in terms of the unique fatty acid composition of the thylakoid membranes of C. raudensis UWO 241 adapted to cold environments.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Chlamydomonas/metabolismo , Citocromos f/química , Citocromos f/metabolismo , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Peso Molecular , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência
10.
Biochem Biophys Res Commun ; 359(2): 234-8, 2007 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-17533111

RESUMO

Overexpression (OE) was used to study the role of the Arabidopsis Golden2-like (GLK1) transcriptional activator in regulating gene expression. Affymetrix Gene Chip and RT-PCR analyses indicated that GLK1 OE in Arabidopsis reprogrammed gene expression networks to enhance a high constitutive expression of genes encoding disease defense related proteins. These include PR10, isochorismate synthase, antimicrobial peptides, glycosyl hydrolases, MATE efflux and other genes associated with pathogen response and detoxification. However, PR1, an indicator of systemic acquired resistance (SAR), was downregulated in GLK1 OE. GLK1 OE in Arabidopsis confers resistance to Fusarium graminearum, a broad host pathogen responsible for major losses in cereal crops. This is the first identification of the GLK1 'regulon' and a novel role for GLK1 in plant defense, suggesting its potential use for providing disease resistance in crop plants.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Arabidopsis/microbiologia , Fusarium/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Peptídeos Catiônicos Antimicrobianos/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Redes Reguladoras de Genes , Imunidade Inata , N-Glicosil Hidrolases/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Regulon , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
11.
Mol Genet Genomics ; 275(4): 387-98, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16425016

RESUMO

Although cytochrome f from the Antarctic psychrophile, Chlamydomonas raudensis UWO 241, exhibits a lower apparent molecular mass (34 kD) than that of the mesophile C. reinhardtii (41 kD) based on SDS-PAGE, both proteins are comparable in calculated molecular mass and show 79% identity in amino acid sequence. The difference in apparent molecular mass was maintained after expression of petA from both Chlamydomonas species in either E. coli or a C. reinhardtii DeltapetA mutant and after substitution of a unique third cysteine-292 to phenylalanine in the psychrophilic cytochrome f. Moreover, the heme of the psychrophilic form of cytochrome f was less stable upon heating than that of the mesophile. In contrast to C. raudensis, a C. reinhardtii DeltapetA mutant transformed with petA from C. raudensis exhibited the ability to undergo state transitions and a capacity for intersystem electron transport comparable to that of C. reinhardtii wild type. However, the C. reinhardtii petA transformants accumulated lower levels of cytochrome b ( 6 ) /f complexes and exhibited lower light saturated rates of O(2) evolution than C. reinhardtii wild type. We show that the presence of an altered form of cytochrome f in C. raudensis does not account for its inability to undergo state transitions or its impaired capacity for intersystem electron transport as previously suggested. A combined survey of the apparent molecular mass, thermal stability and amino acid sequences of cytochrome f from a broad range of mesophilic species shows unequivocally that the observed differences in cytochrome f structure are not related to psychrophilly. Thus, caution must be exercised in relating differences in amino acid sequence and thermal stability to adaptation to cold environments.


Assuntos
Chlamydomonas/genética , Citocromos f/química , Citocromos f/genética , Sequência de Aminoácidos , Animais , Regiões Antárticas , Proteínas de Arabidopsis/genética , Chlamydomonas reinhardtii/genética , Cloroplastos/genética , Clonagem Molecular , Citocromos f/metabolismo , Transporte de Elétrons , Estabilidade Enzimática , Escherichia coli/genética , Teste de Complementação Genética , Dados de Sequência Molecular , Peso Molecular , Mutação , Conformação Proteica , Análise de Sequência
12.
Plant Cell Physiol ; 46(9): 1525-39, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16024910

RESUMO

The effects of overexpression of two Brassica CBF/DREB1-like transcription factors (BNCBF5 and 17) in Brassica napus cv. Westar were studied. In addition to developing constitutive freezing tolerance and constitutively accumulating COR gene mRNAs, BNCBF5- and 17-overexpressing plants also accumulate moderate transcript levels of genes involved in photosynthesis and chloroplast development as identified by microarray and Northern analyses. These include GLK1- and GLK2-like transcription factors involved in chloroplast photosynthetic development, chloroplast stroma cyclophilin ROC4 (AtCYP20-3), beta-amylase and triose-P/Pi translocator. In parallel with these changes, increases in photosynthetic efficiency and capacity, pigment pool sizes, increased capacities of the Calvin cycle enzymes, and enzymes of starch and sucrose biosynthesis, as well as glycolysis and oxaloacetate/malate exchange are seen, suggesting that BNCBF overexpression has partially mimicked cold-induced photosynthetic acclimation constitutively. Taken together, these results suggest that BNCBF/DREB1 overexpression in Brassica not only resulted in increased constitutive freezing tolerance but also partially regulated chloroplast development to increase photochemical efficiency and photosynthetic capacity.


Assuntos
Adaptação Fisiológica/genética , Brassica napus/genética , Brassica napus/fisiologia , Congelamento , Fotossíntese , Fatores de Transcrição/genética , Sequência de Bases , Primers do DNA , Perfilação da Expressão Gênica , RNA Mensageiro/genética
13.
Physiol Plant ; 117(4): 521-531, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12675742

RESUMO

Diurnal patterns of whole-plant and leaf gas exchange and 14C-export of winter wheat acclimated at 20 and 5 degrees C were determined. The 5 degrees C-acclimated plants had lower relative growth rates, smaller biomass and leaf area, but larger specific leaf weight than 20 degrees C plants. Photosynthetic rates in 20 degrees C and 5 degrees C-acclimated leaves were similar; however, daytime export from 5 degrees C-acclimated leaves was 45% lower. Photosynthesis and export remained steady in 20 degrees C and 5 degrees C-acclimated leaves during the daytime. By comparison, photosynthesis in 5 degrees C-stressed leaves (20 degrees C-acclimated plants exposed to 5 degrees C 12 h before and during measurements) declined from 70 to 50% of the 20 degrees C-acclimated leaves during the daytime, while export remained constant at 35% of the 20 degrees C-acclimated and 60% of the 5 degrees C-acclimated leaves. At high light and CO2, photosynthesis and export increased in both 20 degrees C and 5 degrees C-acclimated leaves, but rates in 5 degrees C-stressed leaves remained unchanged. At all conditions daytime export was greater than nighttime export. Taken together, during cold acclimation photosynthesis was upregulated, whereas export was only partially increased. We suggest that this reflects a requirement of cold-acclimated plants to both sustain an increased leaf metabolic demand while concomitantly supporting translocation of photoassimilates to overwintering sinks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...