Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 828400, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677429

RESUMO

Change in the energy metabolism of cancer cells, which display significant differences compared to normal cells, is a rising phenomenon in developing new therapeutic approaches against cancers. One of the metabolic enzymes, hexokinase-II (HK-II) is involved in glycolysis, and inhibiting the HK-II activity may be a potential metabolic target for cancer therapy as most of the drugs in clinical use act on DNA damage. Methyl jasmonate (MJ) is one of the compounds blocking HK-II activity in cancer cells. In a previous study, we showed that the novel MJ analogs inhibit HK-II activity through VDAC detachment from the mitochondria. In this study, to evaluate the potential of targeting HK-2 activity, through patient cohort analysis, we first determined HK-2 expression levels and prognostic significance in highly lethal glioblastoma (GBM) brain tumor. We then examined the in vitro therapeutic effects of the novel analogs in the GBM cells. Here, we report that, among all, compound-10 (C-10) showed significant in vitro therapeutic efficacy as compared to MJ which is in use for preclinical and clinical studies. Afterward, we analyzed cell death triggered by C-10 in two different GBM cell lines. We found that C-10 treatment increased the apoptotic/necrotic cells and autophagy in GBM cells. The newly developed analog, C-10, was found to be lethal against GBM by the activation of cell death authorities, mostly in a necrotic and autophagic fashion at the early stages of the treatment. Considering that possibly decreased intracellular ATP levels by C-10 mediated inhibition of HK-2 activity and disabled VDAC interaction, a more detailed analysis of HK-2 inhibition-mediated cell death can provide a deep understanding of the mechanism of action on the oncosis/necroptosis axis. These findings provide an option to design clinically relevant and effective novel HK-II inhibitors and suggest novel MJ analogs to further study them as potential anticancer agents against GBM.

2.
J Mol Graph Model ; 113: 108160, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35248814

RESUMO

Glioblastoma Multiforme (GBM) is the most aggressive brain tumor and classified as one of the deadliest cancers. The current treatment plans for GBM remains to be ineffective because of its rapid progress and inability of the drugs used to cross the blood-brain barrier (BBB). Thus, developing more effective and potent medicines for GBM are needed. There have been several reports demonstrating that CAPE presents reasonably good anti-cancer activity in certain cancer cell lines and can penetrate the blood-brain barrier. Accordingly, in this study we synthesized several novel CAPE analogs with the addition of more druggable handles and solubilizing entities and subsequently evaluated their in vitro therapeutic efficacies in GBM cell lines (T98G and LN229). The most potent compound was then examined extensively and results showed that the 50 µM novel CAPE analog (compound 10) significantly decreases the viability of both T98G and LN229 GBM cells as compared to CAPE itself. Moreover, the compound 10 was not cytotoxic to healthy human cells (fibroblast-like mesenchymal stem cells) at the same concentration. Apoptotic (32.8%, and 44.6%) cell populations were detected in the compound 10 treated groups for LN229 and T98G, respectively. As an indication of apotosis, significantly increased PARP cleavage was detected in compound 10 versus CAPE treated LN229. In addition, we conducted molecular docking and molecular dynamics (MD) simulations studies on certain targets playing roles on GBM disease pathway such as NF-κB, EGFR, TNF-α, ERK2, PAPR1, hCA IX and hCA XII. Our findings demonstrated that designed CAPE analogs have anti-cancer activity on GBM cells and in silico studies also demonstrate the inhibitory ability of suggested compounds via interactions with critical residues in binding pockets of studied targets. Here, we suggest the novel CAPE analog to study further against GBM. Therefore, identification of the compound related molecular signature may provide more to understand the mechanism of action.


Assuntos
Glioblastoma , Ácidos Cafeicos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Simulação de Acoplamento Molecular , Álcool Feniletílico/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...