Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-29483125

RESUMO

Clostridium difficile infection (CDI) is the leading cause of hospital-acquired infectious diarrhea, with significant morbidity, mortality, and associated health care costs. The major risk factor for CDI is antimicrobial therapy, which disrupts the normal gut microbiota and allows C. difficile to flourish. Treatment of CDI with antimicrobials is generally effective in the short term, but recurrent infections are frequent and problematic, indicating that improved treatment options are necessary. Symptoms of disease are largely due to two homologous toxins, TcdA and TcdB, which are glucosyltransferases that inhibit host Rho GTPases. As the normal gut microbiota is an important component of resistance to CDI, our goal was to develop an effective nonantimicrobial therapy. Here, we report a highly potent small-molecule inhibitor (VB-82252) of TcdA and TcdB. This compound inhibits the UDP-glucose hydrolysis activity of TcdB and protects cells from intoxication after challenge with either toxin. Oral dosing of the inhibitor prevented inflammation in a murine intrarectal toxin challenge model. In a murine model of recurrent CDI, the inhibitor reduced weight loss and gut inflammation during acute disease and did not cause the recurrent disease that was observed with vancomycin treatment. Lastly, the inhibitor demonstrated efficacy similar to that of vancomycin in a hamster disease model. Overall, these results demonstrate that small-molecule inhibition of C. difficile toxin UDP-glucose hydrolysis activity is a promising nonantimicrobial approach to the treatment of CDI.


Assuntos
Antibacterianos/uso terapêutico , Infecções por Clostridium/tratamento farmacológico , Uridina Difosfato Glucose/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Linhagem Celular , Sobrevivência Celular , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/patogenicidade , Infecções por Clostridium/metabolismo , Colo/microbiologia , Cricetinae , Humanos , Hidrólise , Camundongos
2.
Cancer Med ; 1(1): 76-81, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23342256

RESUMO

Bladder cancer is one of the most common cancers in the United States. Numerous markers have been evaluated for suitability of bladder cancer detection and surveillance. However, few of them are acceptable as a routine tool. Therefore, there exists a continuing need for an assay that detects the presence of bladder cancer in humans. It would be advantageous to develop an assay with a protein that is associated with the development of bladder cancer. We have identified the cancerous inhibitor of PP2A (CIP2A) protein as a novel bladder cancer biomarker. In this study, Western blot analysis was used to assess the expression level of CIP2A protein in bladder cancer cell lines and bladder cancer patient tissues (n = 43). Our studies indicated CIP2A protein was abundantly expressed in bladder cancer cell lines but not in nontumor epithelial cell lines. Furthermore, CIP2A was specifically expressed in transitional cell carcinoma (TCC) of the bladder tumor tissues but not in adjacent nontumor bladder tissue. Our data showed that CIP2A protein detection in high-grade TCC tissues had a sensitivity of 65%, which is 3.4-fold higher than that seen in low-grade TCC tissues (19%). The level of CIP2A protein expression increased with the stage of disease (12%, 27%, 67%, and 100% for pTa, pT1, pT2, and pT3 tumor, respectively). In conclusion, our studies suggest that CIP2A protein is specifically expressed in human bladder tumors. CIP2A is preferentially expressed in high-grade and high-stage TCC tumors, which are high-risk and invasive tumors. Our studies reported here support the role of CIP2A in bladder cancer progression and its usefulness for the surveillance of recurrence or progression of human bladder cancer.


Assuntos
Autoantígenos/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Idoso , Idoso de 80 Anos ou mais , Autoantígenos/genética , Linhagem Celular , Feminino , Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias da Bexiga Urinária/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...