Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Genet Evol ; 30: 230-237, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25535945

RESUMO

Cardamom Bushy Dwarf Virus (CBDV) is an aphid-borne nanovirus which infects large cardamom, Amomum subulatum (Zingiberaceae family), in the Himalayan foothills of Northeast India, Nepal and Bhutan. Two aphid species have been reported to transmit CBDV, including Pentalonia nigronervosa and Micromyzus kalimpongensis (also described as Pentalonia kalimpongensis). However, P. nigronervosa was recently split into two species which exhibit different host plant affiliations. Whilst P. nigronervosa primarily feeds on banana plants, Pentaloniacaladii (previously considered a 'form' of P. nigronervosa) typically feeds on plants belonging to the Araceae, Heliconiaceae and Zingiberaceae families. This raises the possibility that CBDV vectors that were originally described as P. nigronervosa correspond to P. caladii. Accurate identification of vector species is important for understanding disease dynamics and for implementing management strategies. However, closely related species can be difficult to distinguish based on morphological characteristics. In this study, we used molecular markers (two mitochondrial loci and one nuclear locus) and Bayesian phylogenetic analyses to identify aphid specimens collected from 148 CBDV infected plants at a range of locations and elevations throughout Sikkim and the Darjeeling district of West Bengal (Northeast India). Our results revealed the presence of a diversity of lineages, comprising up to six distinct species in at least two related genera. These included the three species mentioned above, an unidentified Pentalonia species and two lineages belonging to an unknown genus. Surprisingly, P. caladii was only detected on a single infected plant, indicating that this species may not play an important role in CBDV transmission dynamics. Distinct elevation distributions were observed for the different species, demonstrating that the community composition of aphids which feed on large cardamom plants changes across an elevation gradient. This has implications for understanding how competent vector species could influence spatial and temporal transmission patterns of CBDV.


Assuntos
Afídeos/genética , Babuvirus , Ecossistema , Insetos Vetores/genética , Animais , Afídeos/classificação , Afídeos/virologia , Elettaria/parasitologia , Elettaria/virologia , Índia , Insetos Vetores/classificação , Insetos Vetores/virologia , Musa/parasitologia , Musa/virologia , Filogenia , Doenças das Plantas/parasitologia , Doenças das Plantas/virologia
2.
Infect Genet Evol ; 24: 15-24, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24613431

RESUMO

Nanoviruses are single-stranded DNA (ssDNA) plant viruses which have multipartite genomes consisting of discrete, individually encapsidated components. This multipartite strategy may lead to high rates of reassortment, whereby entire genome components are exchanged among different strains. However, few studies have explored the extent to which reassortment shapes the genetic diversity of nanovirus populations. Here we present an extensive analysis of reassortment among 163 Cardamom bushy dwarf virus (CBDV; Nanoviridae family, Babuvirus genus) isolates collected in Northeast India. We also examined evidence of recombination, which is known to play a role in the evolutionary dynamics of nanovirus populations. By sequencing six discrete genome components for each isolate, we demonstrate that over 40% of the isolates display evidence of at least one reassortment event during their evolutionary histories. Nevertheless, a bias in the frequencies at which different genome components reassort was observed, with the DNA-M and DNA-N components being the most predisposed to reassortment. This may reflect variation in the ability of different genome components to function efficiently in a foreign genomic background. Comparisons of the common regions of different genome components revealed signatures of concerted evolution mediated by frequent inter-component homologous recombination. This process, which has previously been reported in nanoviruses and other multipartite ssDNA viruses, may allow proteins which initiate replication to maintain control over distinct genome components. Notably, DNA-N, one of the genome components most prone to reassortment, also exhibited the most frequent inter-component homologous recombination. This supports the idea that inter-component homologous recombination may promote the efficient replication of novel components which are introduced into a genome via reassortment.


Assuntos
Babuvirus/genética , Elettaria/virologia , Variação Genética , Genoma Viral/genética , Vírus Reordenados/genética , Babuvirus/isolamento & purificação , Sequência de Bases , DNA Viral/genética , Evolução Molecular , Haplótipos/genética , Recombinação Homóloga , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/virologia , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...