Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38674979

RESUMO

Lignin is the natural binder in wood and lignocellulosic plants and is regarded as the main natural and renewable source of phenolic compounds. Its incorporation in the composition of fiberboards will enhance both the environmental performance of the panels and the complex use of natural resources. In recent years, the increased valorization of hydrolysis lignin in value-added applications, including adhesives for bonding fiberboard panels, has gained significant research interest. Markedly, a major drawback is the retention of lignin in the pulp until the hot-pressing process. This problem could be overcome by using a small content of phenol-formaldehyde (PF) resin in the adhesive mixture as an auxiliary binder. The aim of this research work was to investigate and evaluate the effect of the hot-pressing temperature, varied from 150 °C to 200 °C, in a modified hot-press cycle on the main physical and mechanical properties of fiberboard panels bonded with unmodified technical hydrolysis lignin (THL) as the main binder and PF resin as an auxiliary one. It was found that panels with very good mechanical properties can be fabricated even at a hot-pressing temperature of 160 °C, while to provide the panels with satisfactory waterproof properties, it is necessary to have a hot-pressing temperature of at least 190 °C.

2.
Polymers (Basel) ; 16(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38399921

RESUMO

This paper investigated the upcycling process of thermoplastic waste polystyrene (WPS) into thermosetting particleboard adhesive using two cross-linkers, namely methylene diphenyl diisocyanate (MDI) and maleic anhydride (MA). The WPS was dissolved in an organic co-solvent. The weight ratio of WPS/co-solvent was 1:9, and 10% of cross-linkers based on the WPS solids content were added subsequently at 60 °C under continuous stirring for 30 min. The adhesive properties, cohesion strength, and thermo-mechanical properties of WPS-based adhesives were examined to investigate the change of thermoplastic WPS to thermosetting adhesives. The bonding strength of WPS-based adhesives was evaluated in particleboard made of sengon (Falcataria moluccana (Miq.) Barneby & J.W. Grimes) wood and rice straw particles at different weight ratios according to the Japanese Industrial Standard (JIS) A 5908:2003. Rheology and Dynamic Mechanical Analysis revealed that modification with MDI and MA resulted in thermosetting properties in WPS-based adhesives by increasing the viscosity at a temperature above 72.7 °C and reaching the maximum storage modulus above 90.8 °C. WPS modified with MDI had a lower activation energy (Ea) value (83.4 kJ/mole) compared to the WPS modified with MA (150.8 kJ/mole), indicating the cross-linking with MDI was much faster compared with MA. Particleboard fabricated from 100% sengon wood particles bonded with WPS modified with MDI fulfilled the minimum requirement of JIS A 5908:2003 for interior applications.

3.
Polymers (Basel) ; 15(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36987272

RESUMO

This study aimed to develop tannin-based non-isocyanate polyurethane (tannin-Bio-NIPU) and tannin-based polyurethane (tannin-Bio-PU) resins for the impregnation of ramie fibers (Boehmeria nivea L.) and investigate their mechanical and thermal properties. The reaction between the tannin extract, dimethyl carbonate, and hexamethylene diamine produced the tannin-Bio-NIPU resin, while the tannin-Bio-PU was made with polymeric diphenylmethane diisocyanate (pMDI). Two types of ramie fiber were used: natural ramie without pre-treatment (RN) and with pre-treatment (RH). They were impregnated in a vacuum chamber with tannin-based Bio-PU resins for 60 min at 25 °C under 50 kPa. The yield of the tannin extract produced was 26.43 ± 1.36%. Fourier-transform infrared (FTIR) spectroscopy showed that both resin types produced urethane (-NCO) groups. The viscosity and cohesion strength of tannin-Bio-NIPU (20.35 mPa·s and 5.08 Pa) were lower than those of tannin-Bio-PU (42.70 mPa·s and 10.67 Pa). The RN fiber type (18.9% residue) was more thermally stable than RH (7.3% residue). The impregnation process with both resins could improve the ramie fibers' thermal stability and mechanical strength. The highest thermal stability was found in RN impregnated with the tannin-Bio-PU resin (30.5% residue). The highest tensile strength was determined in the tannin-Bio-NIPU RN of 451.3 MPa. The tannin-Bio-PU resin gave the highest MOE for both fiber types (RN of 13.5 GPa and RH of 11.7 GPa) compared to the tannin-Bio-NIPU resin.

4.
Polymers (Basel) ; 15(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36850175

RESUMO

The ongoing transition from a linear to a circular, low-carbon bioeconomy is crucial for reducing the consumption of global natural resources, minimizing waste generation, reducing carbon emissions, and creating more sustainable growth and jobs, the prerequisites necessary to achieve climate neutrality targets and stop biodiversity loss [...].

5.
Polymers (Basel) ; 14(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35956629

RESUMO

This study aimed to analyze the basic properties (chemical composition and physical and mechanical properties) of belangke bamboo (Gigantochloa pruriens) and its potential as a particleboard reinforcement material, aimed at increasing the mechanical properties of the boards. The chemical composition was determined by Fourier transform near infrared (NIR) analysis and X-ray diffraction (XRD) analysis. The physical and mechanical properties of bamboo were evaluated following the Japanese standard JIS A 5908 (2003) and the ISO 22157:2004 standard, respectively. The results showed that this bamboo had average lignin, holocellulose, and alpha-cellulose content of 29.78%, 65.13%, and 41.48%, respectively, with a degree of crystallinity of 33.54%. The physical properties of bamboo, including specific gravity, inner and outer diameter shrinkage, and linear shrinkage, were 0.59%, 2.18%, 2.26%, and 0.18%, respectively. Meanwhile, bamboo's mechanical properties, including compressive strength, shear strength, and tensile strength, were 42.19 MPa, 7.63 MPa, and 163.8 MPa, respectively. Markedly, the addition of belangke bamboo strands as a reinforcing material (surface coating) in particleboards significantly improved the mechanical properties of the boards, increasing the modulus of elasticity (MOE) and bending strength (MOR) values of the fabricated composites by 16 and 3 times.

6.
Polymers (Basel) ; 14(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35566951

RESUMO

This study aimed to propose an alternative technological solution for manufacturing fiberboard panels using a modified hot-pressing regime and hydrolysis lignin as the main binder. The main novelty of the research is the optimized adhesive system composed of unmodified hydrolysis lignin and reduced phenol-formaldehyde (PF) resin content. The fiberboard panels were fabricated in the laboratory with a very low PF resin content, varying from 1% to 3.6%, and hydrolysis lignin addition levels varying from 7% to 10.8% (based on the dry wood fibers). A specific two-stage hot-pressing regime, including initial low pressure of 1.2 MPa and subsequent high pressure of 4 MPa, was applied. The effect of binder content and PF resin content in the adhesive system on the main properties of fiberboards (water absorption, thickness swelling, bending strength, modulus of elasticity, and internal bond strength) was investigated, and appropriate optimization was performed to define the optimal content of PF resin and hydrolysis lignin for complying with European standards. It was concluded that the proposed technology is suitable for manufacturing fiberboard panels fulfilling the strictest EN standard. Markedly, it was shown that for the production of this type of panels, the minimum total content of binders should be 10.6%, and the PF resin content should be at least 14% of the adhesive system.

7.
Polymers (Basel) ; 14(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35335557

RESUMO

This research aimed to investigate the effects of using wood leachate (WL) powder as a cost-effective filler added to novel poly (lactic acid) biocomposites and evaluate their mechanical, thermal, morphological, and antibacterial properties. Fourier transform infrared spectroscopy (FTIR), tensile test, Charpy impact test, Shore hardness, scanning electron microscope (SEM), differential scanning calorimetry (DSC), contact angle, and bacterial growth inhibition tests were employed to characterize the developed biocomposites. The SEM results indicated a proper filler dispersion in the polymer matrix. WL powder improved the hydrophobic nature in the adjusted sample's contact angle experiment. Markedly, the results showed that the addition of WL filler improved the mechanical properties of the fabricated biocomposites. The thermal analysis determined the development in crystallization behavior and a decline in glass transition temperature (Tg) from 60.1 to 49.3 °C in 7% PLA-WL biocomposites. The PLA-WL biocomposites exhibited an antibacterial activity according to the inhibition zone for Escherichia coli bacteria. The developed novel PLA-WL composites can be effectively utilized in various value-added industrial applications as a sustainable and functional biopolymer material.

8.
Polymers (Basel) ; 14(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35160483

RESUMO

The efficient isolation process and understanding of lignin properties are essential to determine key features and insights for more effective lignin valorization as a renewable feedstock for the production of bio-based chemicals including wood adhesives. This study successfully used dilute acid precipitation to recover lignin from black liquor (BL) through a single-step and ethanol-fractionated-step, with a lignin recovery of ~35% and ~16%, respectively. The physical characteristics of lignin, i.e., its morphological structure, were evaluated by scanning electron microscopy (SEM). The chemical properties of the isolated lignin were characterized using comprehensive analytical techniques such as chemical composition, solubility test, morphological structure, Fourier-transform infrared spectroscopy (FTIR), 1H and 13C Nuclear Magnetic Resonance (NMR), elucidation structure by pyrolysis-gas chromatography-mass spectroscopy (Py-GCMS), and gel permeation chromatography (GPC). The fingerprint analysis by FTIR detected the unique peaks corresponding to lignin, such as C=C and C-O in aromatic rings, but no significant differences in the fingerprint result between both lignin. The 1H and 13C NMR showed unique signals related to functional groups in lignin molecules such as methoxy, aromatic protons, aldehyde, and carboxylic acid. The lower insoluble acid content of lignin derived from fractionated-step (69.94%) than single-step (77.45%) correlated to lignin yield, total phenolic content, solubility, thermal stability, and molecular distribution. It contradicted the syringyl/guaiacyl (S/G) units' ratio where ethanol fractionation slightly increased syringyl unit content, increasing the S/G ratio. Hence, the fractionation step affected more rupture and pores on the lignin morphological surface than the ethanol-fractionated step. The interrelationships between these chemical and physicochemical as well as different isolation methods were investigated. The results obtained could enhance the wider industrial application of lignin in manufacturing wood-based composites with improved properties and lower environmental impact.

9.
Materials (Basel) ; 14(22)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34832252

RESUMO

In this study, lignin isolated and fractionated from black liquor was used as a pre-polymer to prepare bio-polyurethane (Bio-PU) resin, and the resin was impregnated into ramie fiber (Boehmeria nivea (L.) Gaudich) to improve its thermal and mechanical properties. The isolated lignin was fractionated by one-step fractionation using two different solvents, i.e., methanol (MeOH) and acetone (Ac). Each fractionated lignin was dissolved in NaOH and then reacted with a polymeric 4,4-methane diphenyl diisocyanate (pMDI) polymer at an NCO/OH mole ratio of 0.3. The resulting Bio-PU was then used in the impregnation of ramie fiber. The characterization of lignin, Bio-PU, and ramie fiber was carried out using several techniques, i.e., Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), pyrolysis-gas-chromatography-mass-spectroscopy (Py-GCMS), Micro Confocal Raman spectroscopy, and an evaluation of fiber mechanical properties (modulus of elasticity and tensile strength). Impregnation of Bio-PU into ramie fiber resulted in weight gain ranging from 6% to 15%, and the values increased when extending the impregnation time. The reaction between the NCO group on Bio-PU and the OH group on ramie fiber forms a C=O group of urethane as confirmed by FTIR and Micro Confocal Raman spectroscopies at a wavenumber of 1600 cm-1. Based on the TGA analysis, ramie fiber with lignin-based Bio-PU had better thermal properties than ramie fiber before impregnation with a greater weight residue of 21.7%. The mechanical properties of ramie fiber also increased after impregnation with lignin-based Bio-PU, resulting in a modulus of elasticity of 31 GPa for ramie-L-isolated and a tensile strength of 577 MPa for ramie-L-Ac. The enhanced thermal and mechanical properties of impregnated ramie fiber with lignin-based Bio-PU resins could increase the added value of ramie fiber and enhance its more comprehensive industrial application as a functional material.

10.
Materials (Basel) ; 14(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34500965

RESUMO

The purpose of this study was to evaluate the feasibility of using magnesium and sodium lignosulfonates (LS) in the production of particleboards, used pure and in mixtures with urea-formaldehyde (UF) resin. Polymeric 4,4'-diphenylmethane diisocyanate (pMDI) was used as a crosslinker. In order to evaluate the effect of gradual replacement of UF by magnesium lignosulfonate (MgLS) or sodium lignosulfonate (NaLS) on the physical and mechanical properties, boards were manufactured in the laboratory with LS content varying from 0% to 100%. The effect of LS on the pH of lignosulfonate-urea-formaldehyde (LS-UF) adhesive compositions was also investigated. It was found that LS can be effectively used to adjust the pH of uncured and cured LS-UF formulations. Particleboards bonded with LS-UF adhesive formulations, comprising up to 30% LS, exhibited similar properties when compared to boards bonded with UF adhesive. The replacement of UF by both LS types substantially deteriorated the water absorption and thickness swelling of boards. In general, NaLS-UF-bonded boards had a lower formaldehyde content (FC) than MgLS-UF and UF-bonded boards as control. It was observed that in the process of manufacturing boards using LS adhesives, increasing the proportion of pMDI in the adhesive composition can significantly improve the mechanical properties of the boards. Overall, the boards fabricated using pure UF adhesives exhibited much better mechanical properties than boards bonded with LS adhesives. Markedly, the boards based on LS adhesives were characterised by a much lower FC than the UF-bonded boards. In the LS-bonded boards, the FC is lower by 91.1% and 56.9%, respectively, compared to the UF-bonded boards. The boards bonded with LS and pMDI had a close-to-zero FC and reached the super E0 emission class (≤1.5 mg/100 g) that allows for defining the laboratory-manufactured particleboards as eco-friendly composites.

11.
Polymers (Basel) ; 13(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34451315

RESUMO

The potential of ammonium lignosulfonate (ALS) as an eco-friendly additive to urea-formaldehyde (UF) resin for manufacturing high-density fiberboard (HDF) panels with acceptable properties and low free formaldehyde emission was investigated in this work. The HDF panels were manufactured in the laboratory with very low UF resin content (4%) and ALS addition levels varying from 4% to 8% based on the mass of the dry wood fibers. The press factor applied was 15 s·mm-1. The physical properties (water absorption and thickness swelling), mechanical properties (bending strength, modulus of elasticity, and internal bond strength), and free formaldehyde emission were evaluated in accordance with the European standards. In general, the developed HDF panels exhibited acceptable physical and mechanical properties, fulfilling the standard requirements for HDF panels for use in load-bearing applications. Markedly, the laboratory-produced panels had low free formaldehyde emission ranging from 2.0 to 1.4 mg/100 g, thus fulfilling the requirements of the E0 and super E0 emission grades and confirming the positive effect of ALS as a formaldehyde scavenger. The thermal analyses performed, i.e., differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), and derivative thermogravimetry (DTG), also confirmed the main findings of the research. It was concluded that ALS as a bio-based, formaldehyde-free adhesive can be efficiently utilized as an eco-friendly additive to UF adhesive formulations for manufacturing wood-based panels under industrial conditions.

12.
Polymers (Basel) ; 13(4)2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33669944

RESUMO

The potential of using residual softwood fibers from the pulp and paper industry for producing eco-friendly, zero-formaldehyde fiberboard panels, bonded with calcium lignosulfonate (CLS) as a lignin-based, formaldehyde free adhesive, was investigated in this work. Fiberboard panels were manufactured in the laboratory by applying CLS addition content ranging from 8% to 14% (on the dry fibers). The physical and mechanical properties of the developed composites, i.e., water absorption (WA), thickness swelling (TS), modulus of elasticity (MOE), bending strength (MOR), as well as the free formaldehyde emission, were evaluated according to the European norms. In general, only the composites, developed with 14% CLS content, exhibited MOE and MOR values, comparable with the standard requirements for medium-density fiberboards (MDF) for use in dry conditions. All laboratory-produced composites demonstrated significantly deteriorated moisture-related properties, i.e., WA (24 h) and TS (24 h), which is a major drawback. Noticeably, the fiberboards produced had a close-to-zero formaldehyde content, reaching the super E0 class (≤1.5 mg/100 g), with values, ranging from 0.8 mg/100 g to 1.1 mg/100 g, i.e., equivalent to formaldehyde emission of natural wood. The amount of CLS adhesive had no significant effect on formaldehyde content.

13.
Polymers (Basel) ; 13(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567731

RESUMO

The potential of using ground birch (Betula verrucosa Ehrh.) bark as an eco-friendly additive in urea-formaldehyde (UF) adhesives for plywood manufacturing was investigated in this work. Five-ply plywood panels were fabricated in the laboratory from beech (Fagus sylvatica L.) veneers bonded with UF adhesive formulations comprising three addition levels of birch bark (BB) as a filler (10%, 15%, and 20%). Two UF resin formulations filled with 10% and 20% wheat flour (WF) were used as reference samples. The mechanical properties (bending strength, modulus of elasticity and shear strength) of the laboratory-fabricated plywood panels, bonded with the addition of BB in the adhesive mixture, were evaluated and compared with the European standard requirements (EN 310 and EN 314-2). The mechanical strength of the plywood with the addition of BB in the adhesive mixture is acceptable and met the European standard requirements. Markedly, the positive effect of BB in the UF adhesive mixture on the reduction of formaldehyde emission from plywood panels was also confirmed. Initially, the most significant decrease in formaldehyde release (up to 14%) was measured for the plywood sample, produced with 15% BB. After four weeks, the decrease in formaldehyde was estimated up to 51% for the sample manufactured with 20% BB. The performed differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), and derivative thermogravimetry (DTG), also confirmed the findings of the study. As this research demonstrated, BB as a waste or by-product of wood processing industry, can be efficiently utilized as an environmentally friendly, inexpensive alternative to WF as a filler in UF adhesive formulations for plywood manufacturing.

14.
Polymers (Basel) ; 13(2)2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33435154

RESUMO

The potential of producing eco-friendly, formaldehyde-free, high-density fiberboard (HDF) panels from hardwood fibers bonded with urea-formaldehyde (UF) resin and a novel ammonium lignosulfonate (ALS) is investigated in this paper. HDF panels were fabricated in the laboratory by applying a very low UF gluing factor (3%) and ALS content varying from 6% to 10% (based on the dry fibers). The physical and mechanical properties of the fiberboards, such as water absorption (WA), thickness swelling (TS), modulus of elasticity (MOE), bending strength (MOR), internal bond strength (IB), as well as formaldehyde content, were determined in accordance with the corresponding European standards. Overall, the HDF panels exhibited very satisfactory physical and mechanical properties, fully complying with the standard requirements of HDF for use in load-bearing applications in humid conditions. Markedly, the formaldehyde content of the laboratory fabricated panels was extremely low, ranging between 0.7-1.0 mg/100 g, which is, in fact, equivalent to the formaldehyde release of natural wood.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...