Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol Lett ; 10(5): 418-424, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37181535

RESUMO

Perfluoroalkyl acids (PFAAs) are widely distributed in the oceans which are their largest global reservoir, but knowledge is limited about their vertical distribution and fate. This study measured the concentrations of PFAAs (perfluoroalkyl carboxylic acids (PFCAs) with 6 to 11 carbons and perfluoroalkanesulfonic acids (PFSAs) with 6 and 8 carbons) in the surface and deep ocean. Seawater depth profiles from the surface to a 5000 m depth at 28 sampling stations were collected in the Atlantic Ocean from ∼50° N to ∼50° S. The results demonstrated PFAA input from the Mediterranean Sea and the English Channel. Elevated PFAA concentrations were observed at the eastern edge of the Northern Atlantic Subtropical Gyre, suggesting that persistent contaminants may accumulate in ocean gyres. The median ΣPFAA surface concentration in the Northern Hemisphere (n = 17) was 105 pg L-1, while for the Southern Hemisphere (n = 11) it was 28 pg L-1. Generally, PFAA concentrations decreased with increasing distance to the coast and increasing depth. The C6-C9 PFCAs and C6 and C8 PFSAs dominated in surface waters, while longer-chain PFAAs (C10-C11 PFCAs) peaked at intermediate depths (500-1500 m). This profile may be explained by stronger sedimentation of longer-chain PFAAs, as they sorb more strongly to particulate organic matter.

2.
Environ Sci Process Impacts ; 25(6): 1015-1030, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37195252

RESUMO

Recycling of lithium-ion batteries (LIBs) is a rapidly growing industry, which is vital to address the increasing demand for metals, and to achieve a sustainable circular economy. Relatively little information is known about the environmental risks posed by LIB recycling, in particular with regards to the emission of persistent (in)organic fluorinated chemicals. Here we present an overview on the use of fluorinated substances - in particular per- and polyfluoroalkyl substances (PFAS) - in state-of-the-art LIBs, along with recycling conditions which may lead to their formation and/or release to the environment. Both organic and inorganic fluorinated substances are widely reported in LIB components, including the electrodes and binder, electrolyte (and additives), and separator. Among the most common substances are LiPF6 (an electrolyte salt), and the polymeric PFAS polyvinylidene fluoride (used as an electrode binder and a separator). Currently the most common LIB recycling process involves pyrometallurgy, which operates at high temperatures (up to 1600 °C), sufficient for PFAS mineralization. However, hydrometallurgy, an increasingly popular alternative recycling approach, operates under milder temperatures (<600 °C), which could favor incomplete degradation and/or formation and release of persistent fluorinated substances. This is supported by the wide range of fluorinated substances detected in bench-scale LIB recycling experiments. Overall, this review highlights the need to further investigate emissions of fluorinated substances during LIB recycling and suggests that substitution of PFAS-based materials (i.e. during manufacturing), or alternatively post-treatments and/or changes in process conditions may be required to avoid formation and emission of persistent fluorinated substances.


Assuntos
Fontes de Energia Elétrica , Fluorocarbonos , Lítio , Reciclagem , Eletrólitos , Íons , Metais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...