Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 95(14): 142002, 2005 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-16241646

RESUMO

We present the first measurement of the Q2 dependence of the neutron spin structure function g2(n) at five kinematic points covering 0.57 (GeV/c)2 < or = Q2 < or = 1.34 (GeV/c)2 at x approximately = 0.2. Though the naive quark-parton model predicts g2 = 0, nonzero values occur in more realistic models of the nucleon which include quark-gluon correlations, finite quark masses, or orbital angular momentum. When scattering from a noninteracting quark, g2(n) can be predicted using next-to-leading order fits to world data for g1(n). Deviations from this prediction provide an opportunity to examine QCD dynamics in nucleon structure. Our results show a positive deviation from this prediction at lower Q2, indicating that contributions such as quark-gluon interactions may be important. Precision data obtained for g1(n) are consistent with next-to-leading order fits to world data.

2.
Phys Rev Lett ; 92(4): 042301, 2004 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-14995367

RESUMO

The electric form factor of the neutron was determined from measurements of the d-->(e-->,e'n)p reaction for quasielastic kinematics. Polarized electrons were scattered off a polarized deuterated ammonia (15ND3) target in which the deuteron polarization was perpendicular to the momentum transfer. The scattered electrons were detected in a magnetic spectrometer in coincidence with neutrons in a large solid angle detector. We find G(n)(E)=0.0526+/-0.0033(stat)+/-0.0026(sys) and 0.0454+/-0.0054+/-0.0037 at Q(2)=0.5 and 1.0 (GeV/c)(2), respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...