Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (200)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37870303

RESUMO

The field of Adoptive Cell Therapy (ACT) has been revolutionized by the development of genetically modified cells, specifically Chimeric Antigen Receptor (CAR)-T cells. These modified cells have shown remarkable clinical responses in patients with hematologic malignancies. However, the high cost of producing these therapies and conducting extensive quality control assessments has limited their accessibility to a broader range of patients. To address this issue, many academic institutions are exploring the feasibility of in-house manufacturing of genetically modified cells, while adhering to guidelines set by national and international regulatory agencies. Manufacturing genetically modified T cell products on a large scale presents several challenges, particularly in terms of the institution's production capabilities and the need to meet infusion quantity requirements. One major challenge involves producing large-scale viral vectors under Good Manufacturing Practice (GMP) guidelines, which is often outsourced to external companies. Additionally, simplifying the T cell transduction process can help minimize variability between production batches, reduce costs, and facilitate personnel training. In this study, we outline a streamlined process for lentiviral transduction of primary human T cells with a fluorescent marker as the gene of interest. The entire process adheres to GMP-compliant standards and is implemented within our academic institution.


Assuntos
Imunoterapia Adotiva , Linfócitos T , Humanos , Imunoterapia Adotiva/métodos , Terapia Baseada em Transplante de Células e Tecidos
2.
Front Immunol ; 14: 1235661, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37828996

RESUMO

Regulatory T cells (Tregs) are essential mediators of tolerance mitigating aberrant immune responses. While naturally occurring Treg (nTreg) development and function are directed by epigenetic events, induced Treg (iTreg) identity and mechanisms of action remain elusive. Mirroring the epigenetic circuits of nTregs, we and others have used hypomethylation agents (HAs) to ex vivo convert T cells into iTregs (HA-iTregs) and further showed that the suppressive properties of the HA-iTregs are predominantly confined in an emergent population, which de novo expresses the immunomodulatory molecule HLA-G, consequently providing a surface marker for isolation of the suppressive HA-iTreg compartment (G+ cells). We isolated the HA-induced G+ cells and their G- counterparts and employed high-throughput RNA-sequencing (RNA-seq) analyses to uncover the G+-specific transcriptomic changes guiding T cells toward a regulatory trajectory upon their exposure to HA. We found a distinct transcriptional upregulation of G+ cells accompanied by enrichment of immune-response-related pathways. Although single-cell RNA-seq profiling revealed regulatory G+ cells to have molecular features akin to nTregs, when assessed in conjunction with the comparative transcriptomic analysis and profiling of secreted cytokines against the non-suppressive G- cells, FOXP3 and other T-helper signatures appear to play a minor role in their suppressive phenotype. We found an ectopic expression of IDO-1 and CCL17/22 in G+ cells, denoting that in vitro exposure of T cells to HA may well unlock myeloid suppressor genes. This report provides transcriptional data shaping the molecular identity of a highly purified and potent HA-iTreg population and hints toward ectopic myeloid-specific molecular mechanisms mediating HA-iTreg function.


Assuntos
Linfócitos T Reguladores , Transcriptoma , Diferenciação Celular , Citocinas/metabolismo , Metilação de DNA
3.
Front Med (Lausanne) ; 10: 1166871, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275377

RESUMO

Regulatory T-cell (Treg) immunotherapy has emerged as a promising and highly effective strategy to combat graft-versus-host disease (GvHD) after allogeneic hematopoietic cell transplantation (allo-HCT). Both naturally occurring Treg and induced Treg populations have been successfully evaluated in trials illustrating the feasibility, safety, and efficacy required for clinical translation. Using a non-mobilized leukapheresis, we have developed a good manufacturing practice (GMP)-compatible induced Treg product, termed iG-Tregs, that is enriched in cells expressing the potent immunosuppressive human leucocyte antigen-G molecule (HLA-G+). To assess the safety and the maximum tolerable dose (MTD) of iG-Tregs, we conduct a phase I-II, two-center, interventional, dose escalation (3 + 3 design), open-label study in adult patients undergoing allo-HCT from an HLA-matched sibling donor, which serves also as the donor for iG-Treg manufacturing. Herein, we present the clinical protocol with a detailed description of the study rationale and design as well as thoroughly explain every step from patient screening, product manufacturing, infusion, and participant follow-up to data collection, management, and analysis (registered EUDRACT-2021-006367-26).

6.
Bone Marrow Transplant ; 54(12): 1963-1972, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30867554

RESUMO

Invasive aspergillosis (IA) represents a leading cause of mortality in immunocompromised patients. Although adoptive immunotherapy with Aspergillus-specific T cells (Asp-STs) represents a promising therapeutic approach against IA, the complex and costly production limits its broader application. We generated Asp-STs from a single blood draw of healthy individuals or IA patients in only 10 days, by either Aspergillus fumigatus (AF) lysate or peptide stimulation of mononuclear cells. The cells were phenotypically and functionally characterized, and safety was assessed in xenografts. Healthy donor-derived and lysate- or peptide-pulsed Asp-STs presented comparable fold expansion, immunophenotype, and Th1 responses. Upon cross-stimulation, only the lysate-pulsed Asp-STs were empowered to respond to peptide stimulation, although both cell products induced hyphal damage. Importantly, Asp-STs cross-reacted with other fungal species and did not induce alloreactivity in vivo. IA patient-derived T cells displayed an anergic phenotype that prohibited sufficient expansion and yield of meaningful doses of Asp-STs for autologous immunotherapy. Using a rapid and simple process, we generated, from healthy donors but not IA patients, functionally active Asp-STs of broad specificity and at clinically relevant numbers. Such an approach may form the basis for the effective management of IA in the context of allogeneic hematopoietic cell transplantation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...