Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 36449, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27808168

RESUMO

Defying the requirements of translational periodicity in 3D, rotation of the lattice orientation within an otherwise single crystal provides a new form of solid. Such rotating lattice single (RLS) crystals are found, but only as spherulitic grains too small for systematic characterization or practical application. Here we report a novel approach to fabricate RLS crystal lines and 2D layers of unlimited dimensions via a recently discovered solid-to-solid conversion process using a laser to heat a glass to its crystallization temperature but keeping it below the melting temperature. The proof-of-concept including key characteristics of RLS crystals is demonstrated using the example of Sb2S3 crystals within the Sb-S-I model glass system for which the rotation rate depends on the direction of laser scanning relative to the orientation of initially formed seed. Lattice rotation in this new mode of crystal growth occurs upon crystallization through a well-organized dislocation/disclination structure introduced at the glass/crystal interface. Implications of RLS growth on biomineralization and spherulitic crystal growth are noted.

2.
Acta Biomater ; 10(11): 4878-4886, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25072619

RESUMO

The devitrification of the 45S5 variety of bioactive glasses (BGs) in relation to phase separation is studied with scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry and positron annihilation lifetime spectroscopy techniques. It is shown that the type of phase separation (such as spinodal vs. droplet-like) has a pronounced effect on the activation energy of viscous flow and crystallization, the onset temperature of crystallization and the void size distribution at the nanoscale. Generally, the Johnson-Mehl-Avrami (JMA) relation does not describe crystallization kinetics in bulk 45S5 BG. However, for powder samples (<300 µm) the difference in crystallization kinetics, which is surface-driven for the two kinds of glasses, becomes much smaller, and can be described with the JMA relation under some circumstances.


Assuntos
Cerâmica/química , Vidro/química , Transição de Fase , Varredura Diferencial de Calorimetria , Cristalização , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...