Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 21: 5228-5239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928947

RESUMO

Plants employ self-incompatibility (SI) to promote cross-fertilization. In Brassicaceae, this process is regulated by the formation of a complex between the pistil determinant S receptor kinase (SRK) and the pollen determinant S-locus protein 11 (SP11, also known as S-locus cysteine-rich protein, SCR). In our previous study, we used the crystal structures of two eSRK-SP11 complexes in Brassica rapa S8 and S9 haplotypes and nine computationally predicted complex models to demonstrate that only the SRK ectodomain (eSRK) and SP11 pairs derived from the same S haplotype exhibit high binding free energy. However, predicting the eSRK-SP11 complex structures for the other 100 + S haplotypes and genera remains difficult because of SP11 polymorphism in sequence and structure. Although protein structure prediction using AlphaFold2 exhibits considerably high accuracy for most protein monomers and complexes, 46% of the predicted SP11 structures that we tested showed < 75 mean per-residue confidence score (pLDDT). Here, we demonstrate that the use of curated multiple sequence alignment (MSA) for cysteine-rich proteins significantly improved model accuracy for SP11 and eSRK-SP11 complexes. Additionally, we calculated the binding free energies of the predicted eSRK-SP11 complexes using molecular dynamics (MD) simulations and observed that some Arabidopsis haplotypes formed a binding mode that was critically different from that of B. rapa S8 and S9. Thus, our computational results provide insights into the haplotype-specific eSRK-SP11 binding modes in Brassicaceae at the residue level. The predicted models are freely available at Zenodo, https://doi.org/10.5281/zenodo.8047768.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...