Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virchows Arch ; 476(5): 753-762, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31823000

RESUMO

Personalised medicine for primary lung cancers (PLCs) requires molecular analysis of cancer tissue or cells. The primary objective of the present prospective study was to assess the concordance between epidermal growth factor receptor (EGFR) gene mutation detection and echinoderm microtubule-associated protein-like (EML) 4-anaplastic lymphoma kinase protein (ALK) expression using liquid-based cytology (LBC) samples and matched histology samples of PLC patients. A total of 117 patients who underwent surgical resection of non-small cell PLC were enrolled. Cytological specimens scratched from the resected PLC lesion were fixed in CytoRich Red. DNA extracted from LBC samples was examined for EGFR gene mutations. Anaplastic lymphoma kinase arrangement was analysed by immunostaining and fluorescence in situ hybridisation. Our patient cohort comprised 93 cases of adenocarcinoma, 16 squamous cell carcinoma, three adenosquamous carcinoma, two large cell neuroendocrine carcinoma, one pleomorphic carcinoma and two other cases. Sixty-six (58.4%) LBC samples harboured EGFR gene mutations. The overall concordance rate in EGFR gene mutation status, including minor mutations, between histologic and paired LBC specimens (N = 105) was 100%. The overall concordance rate of EGFR gene mutation status, including minor mutations and ALK status according to immunostains between histologic and paired LBC specimens, was 100% (105/105) and 100% (48/48), respectively. Genotyping and protein expression studies can be reliably performed using LBC samples prepared with CytoRich Red. Analysis of such samples may guide individual therapy in PLC patients.


Assuntos
Adenocarcinoma/genética , Quinase do Linfoma Anaplásico/genética , Carcinoma Neuroendócrino/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/genética , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Neuroendócrino/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/patologia , Estudos de Coortes , Receptores ErbB/genética , Feminino , Rearranjo Gênico , Técnicas de Genotipagem , Humanos , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Estudos Prospectivos
2.
J Atheroscler Thromb ; 16(3): 230-8, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19556728

RESUMO

AIM: Calcium channel blockers (CCBs) inhibit the migration of vascular smooth muscle cells (VSMC) by mechanisms that remain poorly understood. The purpose of the present study was to characterize the signaling mechanisms by which CCBs inhibit VSMC migration. METHODS AND RESULTS: Nifedipine potently inhibited platelet-derived growth factor (PDGF)-induced chemotaxis, collagen I-induced haptotaxis, and wound-induced migration of human aortic VSMC. In addition, nifedipine inhibited PDGF-induced membrane ruffling and lamellipodium formation. PDGF-induced VSMC migration was significantly inhibited by PP2, a selective inhibitor of the Src kinase family, and was also significantly inhibited by the expression of kinase-inactive Src, suggesting that Src is required for VSMC migration. Nifedipine also inhibited PDGF-induced Src activation (by 60+/-4% with 30 microM) and tyrosinephosphorylation of Cas, paxillin, and cortactin, which are actin-associated substrates of Src. RNA interference-induced knockdown of the Ca(2+)-dependent tyrosine kinase, Pyk2, resulted in inhibition of PDGF-induced Src activation and migration. Finally, nifedipine inhibited PDGF-induced Pyk2 activation in a dose-dependent manner. CONCLUSION: These data suggest that nifedipine interferes with VSMC migration via inhibition of the Pyk2-Src axis and inhibition of actin remodeling processes, including membrane ruffling and lamellipodium formation.


Assuntos
Movimento Celular/efeitos dos fármacos , Quinase 2 de Adesão Focal/antagonistas & inibidores , Miócitos de Músculo Liso/fisiologia , Nifedipino/farmacologia , Quinases da Família src/antagonistas & inibidores , Actinas/metabolismo , Bloqueadores dos Canais de Cálcio , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Células Cultivadas , Quinase 2 de Adesão Focal/metabolismo , Humanos , Músculo Liso Vascular/citologia , Fator de Crescimento Derivado de Plaquetas/fisiologia , Pseudópodes/efeitos dos fármacos , Quinases da Família src/metabolismo
3.
Hypertens Res ; 31(5): 987-98, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18712054

RESUMO

Recent studies suggest that osteopontin (OPN) plays a critical role in the progression of atherosclerotic plaques and that angiotensin II (Ang II) is a potent upregulator of OPN expression. The goal of the present study was to characterize the signaling mechanisms whereby Ang II increases OPN expression in vascular smooth muscle cells (VSMC). YM-254890, a specific inhibitor of G(q/11), potently suppressed Ang II-induced OPN expression and ERK1/2 activation. Among dominant-negative (DN) mutants of small G proteins, only DN-Ras suppressed Ang II-induced OPN promoter activity. DN-MEK1 markedly inhibited Ang II-induced OPN promoter activity, while neither DN-JNK nor DN-p38 MAP kinase had any effect. DN-Src and DN-Fyn suppressed Ang II-induced OPN promoter activity. YM-254890 inhibited Ang II-induced Src and Ras activation, and PP2, a selective inhibitor for the Src kinase family, inhibited Ras activation, suggesting that the G(q/11)-Src-Ras axis is the upstream signaling cascade for Ang II-induced OPN expression. Finally, small interfering RNA against Ets-1 suppressed Ang II-induced OPN expression. In conclusion, these data suggest that Ang II-induced OPN expression in VSMC is mediated by signaling cascades involving G(q/11) the Ras-ERK axis, and the Src kinase family, and by the transcription factor, Ets-1. These signaling molecules may represent therapeutic targets for the prevention of pathological vascular remodeling.


Assuntos
Angiotensina II/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Músculo Liso Vascular/metabolismo , Osteopontina/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteínas ras/metabolismo , Animais , Proteína Tirosina Quinase CSK , Artérias Carótidas/citologia , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/metabolismo , Cateterismo/efeitos adversos , Células Cultivadas , Quinase 2 de Adesão Focal/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/antagonistas & inibidores , Músculo Liso Vascular/citologia , Peptídeos Cíclicos/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Túnica Íntima/citologia , Túnica Íntima/efeitos dos fármacos , Túnica Íntima/metabolismo , Quinases da Família src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...