Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vitam Horm ; 117: 101-132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34420577

RESUMO

Neurotropic α-herpesvirinae subfamily members, herpes simplex virus type 1 (HSV-1) and bovine herpesvirus 1 (BoHV-1), are important viral pathogens in their respective hosts. Following acute infection on mucosal surfaces, these viruses establish life-long latency in neurons within trigeminal ganglia (TG) and central nervous system. Chronic or acute stress (physiological or psychological) increases the frequency of reactivation from latency, which leads to virus shedding, virus transmission, and recurrent disease. While stress impairs immune responses and inflammatory signaling cascades, we predict stressful stimuli directly stimulate viral gene expression and productive infection during early stages of reactivation from latency. For example, BoHV-1 and HSV-1 productive infection is impaired by glucocorticoid receptor (GR) antagonists but is stimulated by the synthetic corticosteroid dexamethasone. Promoters that drive expression of key viral transcriptional regulatory proteins are cooperatively stimulated by GR and specific Krüppel like transcription factors (KLF) induced during stress induced reactivation from latency. The BoHV-1 immediate early transcription unit 1 promoter and contains two GR response elements (GRE) that are essential for cooperative transactivation by GR and KLF15. Conversely, the HSV-1 infected cell protein 0 (ICP0) and ICP4 promoter as well as the BoHV-1 ICP0 early promoter lack consensus GREs: however, these promoters are cooperatively transactivated by GR and KLF4 or KLF15. Hence, growing evidence suggests GR and stress-induced transcription factors directly stimulate viral gene expression and productive infection during early stages of reactivation from latency. We predict the immune inhibitory effects of stress enhance virus spread at late stages during reactivation from latency.


Assuntos
Infecções por Herpesviridae , Receptores de Glucocorticoides , Regulação Viral da Expressão Gênica , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/metabolismo , Humanos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Fatores de Transcrição/genética , Ativação Viral/genética
2.
J Virol ; 95(20): e0076821, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34319779

RESUMO

Following bovine herpesvirus 1 (BoHV-1) acute infection of ocular, oral, or nasal cavities, sensory neurons within trigeminal ganglia are an important site for latency. Stress, as mimicked by the synthetic corticosteroid dexamethasone, consistently induces reactivation from latency. Expression of two key viral transcriptional regulatory proteins, BoHV-1 infected cell protein 0 (bICP0) and bICP4, are regulated by sequences within the immediate early promoter (IEtu1). A separate early promoter also drives bICP0 expression, presumably to ensure sufficient levels of this important transcriptional regulatory protein. Productive infection and bICP0 early promoter activity are cooperatively transactivated by Krüppel-like factor 4 (KLF4) and a type I nuclear hormone receptor (NHR), androgen receptor, glucocorticoid receptor, or progesterone receptor. The bICP0 early promoter contains three separate transcriptional enhancers that mediate cooperative transactivation. In contrast to the IEtu1 promoter, the bICP0 early promoter lacks consensus type I NHR binding sites. Consequently, we hypothesized that KLF4 and Sp1 binding sites are essential for type I NHR and KLF4 to transactivate the bICP0 promoter. Mutating KLF4 and Sp1 binding sites in each enhancer domain significantly reduced transactivation by KLF4 and a type I NHR. Chromatin immunoprecipitation (ChIP) studies demonstrated that occupancy of bICP0 early promoter sequences by KLF4 and type I NHR is significantly reduced when KLF4 and/or Sp1 binding sites are mutated. These studies suggest that cooperative transactivation of the bICP0 E promoter by type I NHRs and a stress-induced pioneer transcription factor (KLF4) promote viral replication and spread in neurons or nonneural cells in reproductive tissue. IMPORTANCE Understanding how stressful stimuli and changes in the cellular milieu mediate viral replication and gene expression in the natural host is important for developing therapeutic strategies that impair virus transmission and disease. For example, bovine herpesvirus 1 (BoHV-1) reactivation from latency is consistently induced by the synthetic corticosteroid dexamethasone, which mimics the effects of stress. Furthermore, BoHV-1 infection increases the incidence of abortion in pregnant cows, suggesting that sex hormones stimulate viral growth in certain tissues. Previous studies revealed that type I nuclear hormone receptors (NHRs) (androgen, glucocorticoid, or progesterone) and a pioneer transcription factor, Krüppel-like factor 4 (KLF4), cooperatively transactivate the BoHV-1 infected cell protein 0 (bICP0) early promoter. Transactivation was mediated by Sp1 and/or KLF4 consensus binding sites within the three transcriptional enhancers. These studies underscore the complexity by which BoHV-1 exploits type I NHR fluctuations to enhance viral gene expression, replication, and transmission in the natural host.


Assuntos
Herpesvirus Bovino 1/metabolismo , Transativadores/genética , Ubiquitina-Proteína Ligases/genética , Células A549 , Animais , Sítios de Ligação , Regulação Viral da Expressão Gênica/genética , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/genética , Humanos , Proteínas Imediatamente Precoces/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Regiões Promotoras Genéticas/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/metabolismo , Ativação Viral/genética , Latência Viral/genética , Replicação Viral
3.
Virology ; 552: 63-72, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-33065464

RESUMO

Bovine herpesvirus 1 (BoHV-1), a significant viral pathogen, establishes latency in sensory neurons. The viral genome contains more than 100 consensus glucocorticoid receptor (GR) regulatory elements (GREs): consequently, stress stimulates viral replication and reactivation from latency. The immediate early transcription unit 1 (IEtu1) and bICP0 early promoters are transactivated by GR and synthetic corticosteroid dexamethasone. The androgen receptor (AR), like GR, is a Type 1 nuclear hormone receptor that binds and stimulates certain promoters containing GREs. Consequently, we hypothesized AR and 5α-Dihydrotestosterone (DHT) stimulate productive infection and key viral promoters. New studies demonstrated AR, DHT, and Krüppel like transcription factor 4 (KLF4) cooperatively stimulated productive infection and bICP0 E promoter activity in mouse neuroblastoma cells (Neuro-2A). KLF15 also cooperated with AR and DHT to stimulate IEtu1 promoter activity. We suggest AR and testosterone increase the prevalence of virus in semen by stimulating viral gene expression and replication.


Assuntos
17-Cetosteroides/metabolismo , Androstanóis/metabolismo , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Receptores Androgênicos/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Bovinos , Linhagem Celular , Dexametasona/análogos & derivados , Dexametasona/metabolismo , Regulação Viral da Expressão Gênica , Genoma Viral , Fator 4 Semelhante a Kruppel/metabolismo , Camundongos , Regiões Promotoras Genéticas , Replicação Viral
4.
Virus Res ; 288: 198115, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32795492

RESUMO

Bovine herpesvirus 1 (BoHV-1), including commercially available modified live vaccines, readily infect the fetus and ovaries, which can cause reproductive failure. The BoHV-1 latency-reactivation cycle in sensory neurons further complicates reproductive failure because progesterone sporadically induces reactivation from latency. The progesterone receptor (PR) and Krüppel-like transcription factor 15 (KLF15) cooperatively stimulate productive infection and the immediate early transcription unit 1 (IEtu1) promoter. In addition to the IEtu1 promoter, the bICP0 gene also contains a separate early (E) promoter. In this study, we tested the hypothesis that PR and KLF family members transactivate the bICP0 E promoter. PR and KLF4 stimulated bICP0 E promoter activity and expression of late productive viral protein expression in a cooperative manner. Additional studies revealed three enhancer domains within the bICP0 E promoter were responsive to PR and KLF4. Chromatin immunoprecipitation studies demonstrated PR and KLF4 occupy bICP0 E promoter sequences in transfected Neuro-2A cells and at late times following infection of bovine kidney cells. Co-immunoprecipitation studies indicated PR and KLF4 stably interact with each other. These studies suggest cooperative activation of the bICP0 E promoter by PR and KLF4 correlate with interactions between these pioneer transcription factors.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Bovino 1/genética , Fatores de Transcrição Kruppel-Like/genética , Regiões Promotoras Genéticas , Receptores de Progesterona/genética , Fatores de Transcrição/genética , Proteínas Virais/genética , Animais , Bovinos , Linhagem Celular , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Receptores de Progesterona/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo , Replicação Viral
5.
J Virol ; 94(4)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31776270

RESUMO

An important site for bovine herpesvirus 1 (BoHV-1) latency is sensory neurons within trigeminal ganglia (TG). The synthetic corticosteroid dexamethasone consistently induces BoHV-1 reactivation from latency. Expression of four Krüppel-like transcription factors (KLF), i.e., KLF4, KLF6, PLZF (promyelocytic leukemia zinc finger), and KLF15, are induced in TG neurons early during dexamethasone-induced reactivation. The glucocorticoid receptor (GR) and KLF15 form a feed-forward transcription loop that cooperatively transactivates the BoHV-1 immediate early transcription unit 1 (IEtu1) promoter that drives bovine infected cell protein 0 (bICP0) and bICP4 expression. Since the bICP0 gene also contains a separate early (E) promoter, we tested the hypothesis that GR and KLF family members transactivate the bICP0 E promoter. GR and KLF4, both pioneer transcription factors, cooperated to stimulate bICP0 E promoter activity in a ligand-independent manner in mouse neuroblastoma cells (Neuro-2A). Furthermore, GR and KLF4 stimulated productive infection. Mutating both half GR binding sites did not significantly reduce GR- and KLF4-mediated transactivation of the bICP0 E promoter, suggesting that a novel mechanism exists for transactivation. GR and KLF15 cooperatively stimulated bICP0 activity less efficiently than GR and KL4: however, KLF6, PLZF, and GR had little effect on the bICP0 E promoter. GR, KLF4, and KLF15 occupied bICP0 E promoter sequences in transfected Neuro-2A cells. GR and KLF15, but not KLF4, occupied the bICP0 E promoter at late times during productive infection of bovine cells. Collectively, these studies suggest that cooperative transactivation of the bICP0 E promoter by two pioneer transcription factors (GR and KLF4) correlates with stimulating lytic cycle viral gene expression following stressful stimuli.IMPORTANCE Bovine herpesvirus 1 (BoHV-1), an important bovine pathogen, establishes lifelong latency in sensory neurons. Reactivation from latency is consistently induced by the synthetic corticosteroid dexamethasone. We predict that increased corticosteroid levels activate the glucocorticoid receptor (GR). Consequently, viral gene expression is stimulated by the activated GR. The immediate early transcription unit 1 promoter (IEtu1) drives expression of two viral transcriptional regulatory proteins, bovine infected cell protein 0 (bICP0) and bICP4. Interestingly, a separate early promoter also drives bICP0 expression. Two pioneer transcription factors, GR and Krüppel-like transcription factor 4 (KLF4), cooperatively transactivate the bICP0 early (E) promoter. GR and KLF15 cooperate to stimulate bICP0 E promoter activity but significantly less than GR and KLF4. The bICP0 E promoter contains enhancer-like domains necessary for GR- and KLF4-mediated transactivation that are distinct from those for GR and KLF15. Stress-induced pioneer transcription factors are proposed to activate key viral promoters, including the bICP0 E promoter, during early stages of reactivation from latency.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Receptores de Glucocorticoides/metabolismo , Transativadores/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Sítios de Ligação , Bovinos , Linhagem Celular , Regulação Viral da Expressão Gênica/genética , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/metabolismo , Herpesvirus Bovino 1/patogenicidade , Proteínas Imediatamente Precoces/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/fisiologia , Camundongos , Regiões Promotoras Genéticas/genética , Fator de Transcrição 4/metabolismo , Fatores de Transcrição/metabolismo , Gânglio Trigeminal/virologia , Proteínas Virais/metabolismo , Ativação Viral/genética
6.
Virus Res ; 276: 197803, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31697987

RESUMO

Bovine herpesvirus 1 (BoHV-1), including modified live vaccines, can cause abortions in pregnant cows. Progesterone maintains pregnancy and promotes spermiogenesis and testosterone biosynthesis in males: furthermore, progesterone is a neuro-steroid. Recent published studies demonstrated progesterone stimulated the BoHV-1 immediate early transcription unit 1 (IEtu1) promoter, and two glucocorticoid receptor response elements within the promoter were required for progesterone mediated transactivation. In this study, we tested whether progesterone induces reactivation from latency in rabbits. As expected, the synthetic corticosteroid dexamethasone consistently induced reactivation from latency in males and females. While progesterone induced reactivation from latency in approximately one-half of male rabbits, virus shedding was sporadic compared to dexamethasone and less efficient in female rabbits. Progesterone significantly increased productive infection in rabbit skin cells, which correlated with stimulating reactivation. These studies suggest progesterone promotes BoHV-1 spread in cattle, in part, by increasing the frequency of reactivation from latency.


Assuntos
Doenças dos Bovinos/metabolismo , Doenças dos Bovinos/virologia , Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 1/fisiologia , Progesterona/metabolismo , Ativação Viral , Latência Viral , Animais , Anticorpos Antivirais , Bovinos , Doenças dos Bovinos/imunologia , Feminino , Masculino , Progesterona/farmacologia , Coelhos , Fatores Sexuais , Ativação Viral/efeitos dos fármacos , Ativação Viral/imunologia , Latência Viral/efeitos dos fármacos , Latência Viral/imunologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/imunologia , Eliminação de Partículas Virais
7.
J Virol ; 92(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29899098

RESUMO

Following productive infection, bovine herpesvirus 1 (BoHV-1) establishes latency in sensory neurons. As in other alphaherpesviruses, expression of BoHV-1 immediate early (IE) genes is regulated by an enhancer complex containing the viral IE activator VP16, the cellular transcription factor Oct-1, and transcriptional coactivator HCF-1, which is assembled on an IE enhancer core element (TAATGARAT). Expression of the IE transcription unit that encodes the viral IE activators bICP0 and bICP4 may also be induced by the activated glucocorticoid receptor (GR) via two glucocorticoid response elements (GREs) located upstream of the enhancer core. Strikingly, lytic infection and reactivation from latency are consistently enhanced by glucocorticoid treatment in vivo As the coactivator HCF-1 is essential for IE gene expression of alphaherpesviruses and recruited by multiple transcription factors, we tested whether HCF-1 is required for glucocorticoid-induced IE gene expression. Depletion of HCF-1 reduced GR-mediated activation of the IE promoter in mouse neuroblastoma cells (Neuro-2A). More importantly, HCF-1-mediated GR activation of the promoter was dependent on the presence of GRE sites but independent of the TAATGARAT enhancer core element. HCF-1 was also recruited to the GRE region of a promoter lacking the enhancer core, consistent with a direct role of the coactivator in mediating GR-induced transcription. Similarly, during productive lytic infection, HCF-1 and GR occupied the IE region containing the GREs. These studies indicate HCF-1 is critical for GR activation of the viral IE genes and suggests that glucocorticoid induction of viral reactivation proceeds via an HCF-1-GR mechanism in the absence of the viral IE activator VP16.IMPORTANCE BoHV-1 transcription is rapidly activated during stress-induced reactivation from latency. The immediate early transcription unit 1 (IEtu1) promoter is regulated by the GR via two GREs. The IEtu1 promoter regulates expression of two viral transcriptional regulatory proteins, infected cell proteins 0 and 4 (bICP0 and bICP4), and thus must be stimulated during reactivation. This study demonstrates that activation of the IEtu1 promoter by the synthetic corticosteroid dexamethasone requires HCF-1. Interestingly, the GRE sites, but not the IE enhancer core element (TAATGARAT), were required for HCF-1-mediated GR promoter activation. The GR and HCF-1 were recruited to the IEtu1 promoter in transfected and infected cells. Collectively, these studies indicate that HCF-1 is critical for GR activation of the viral IE genes and suggest that an HCF-1-GR complex can stimulate the IEtu1 promoter in the absence of the viral IE activator VP16.


Assuntos
Regulação Viral da Expressão Gênica , Genes Precoces , Glucocorticoides/metabolismo , Herpesvirus Bovino 1/fisiologia , Fator C1 de Célula Hospedeira/metabolismo , Receptores de Glucocorticoides/metabolismo , Transcrição Gênica , Animais , Linhagem Celular , Técnicas de Silenciamento de Genes , Fator C1 de Célula Hospedeira/genética , Camundongos , Neurônios/virologia
8.
J Virol ; 91(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28794031

RESUMO

Bovine herpesvirus 1 (BoHV-1), an important bovine pathogen, establishes lifelong latency in sensory neurons. Latently infected calves consistently reactivate from latency following a single intravenous injection of the synthetic corticosteroid dexamethasone. The immediate early transcription unit 1 (IEtu1) promoter, which drives bovine ICP0 (bICP0) and bICP4 expression, is stimulated by dexamethasone because it contains two glucocorticoid receptor (GR) response elements (GREs). Several Krüppel-like transcription factors (KLF), including KLF15, are induced during reactivation from latency, and they stimulate certain viral promoters and productive infection. In this study, we demonstrate that the GR and KLF15 were frequently expressed in the same trigeminal ganglion (TG) neuron during reactivation and cooperatively stimulated productive infection and IEtu1 GREs in mouse neuroblastoma cells (Neuro-2A). We further hypothesized that additional regions in the BoHV-1 genome are transactivated by the GR or stress-induced transcription factors. To test this hypothesis, BoHV-1 DNA fragments (less than 400 bp) containing potential GR and KLF binding sites were identified and examined for transcriptional activation by stress-induced transcription factors. Intergenic regions within the unique long 52 gene (UL52; a component of the DNA primase/helicase complex), bICP4, IEtu2, and the unique short region were stimulated by KLF15 and the GR. Chromatin immunoprecipitation studies revealed that the GR and KLF15 interacted with sequences within IEtu1 GREs and the UL52 fragment. Coimmunoprecipitation studies demonstrated that KLF15 and the GR were associated with each other in transfected cells. Since the GR stimulates KLF15 expression, we suggest that these two transcription factors form a feed-forward loop that stimulates viral gene expression and productive infection following stressful stimuli.IMPORTANCE Bovine herpesvirus 1 (BoHV-1) is an important viral pathogen that causes respiratory disease and suppresses immune responses in cattle; consequently, life-threatening bacterial pneumonia can occur. Following acute infection, BoHV-1 establishes lifelong latency in sensory neurons. Reactivation from latency is initiated by the synthetic corticosteroid dexamethasone. Dexamethasone stimulates lytic cycle viral gene expression in sensory neurons of calves latently infected with BoHV-1, culminating in virus shedding and transmission. Two stress-induced cellular transcription factors, Krüppel-like transcription factor 15 (KLF15) and the glucocorticoid receptor (GR), cooperate to stimulate productive infection and viral transcription. Additional studies demonstrated that KLF15 and the GR form a stable complex and that these stress-induced transcription factors bind to viral DNA sequences, which correlates with transcriptional activation. The ability of the GR and KLF15 to synergistically stimulate viral gene expression and productive infection may be critical for the ability of BoHV-1 to reactivate from latency following stressful stimuli.


Assuntos
Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/fisiologia , Fatores de Transcrição Kruppel-Like/metabolismo , Receptores de Glucocorticoides/metabolismo , Transcrição Gênica , Ativação Viral , Animais , Sítios de Ligação , Bovinos , Doenças dos Bovinos/virologia , Células Cultivadas , Imunoprecipitação da Cromatina , Regulação Viral da Expressão Gênica , Infecções por Herpesviridae/metabolismo , Rim/metabolismo , Rim/virologia , Camundongos , Neuroblastoma/metabolismo , Neuroblastoma/virologia , Regiões Promotoras Genéticas , Coelhos , Elementos de Resposta , Pele/metabolismo , Pele/virologia , Transativadores , Gânglio Trigeminal/metabolismo , Gânglio Trigeminal/virologia , Latência Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...