Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Saudi J Biol Sci ; 30(7): 103702, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37485451

RESUMO

Yellow cosmos (Cosmos sulphureus Cav.) is a specific flowering plant and considered a suitable genetic engineering model. Agrobacterium-mediated plant transformation is commonly used for plant genetic engineering. Floral dip transformation is one of the plant genetic transformation methods, and it involves dipping flower buds into an Agrobacterium suspension. Studies on floral dip transformation of yellow cosmos have never been reported. Therefore, an efficient method in plant genetic engineering must be established. This study developed an effective and efficient floral dip transformation method for yellow cosmos. In this study, flower buds with sizes of 5-7 mm were used. Several parameters have been observed to optimize the floral dip method. These parameters included the optical density (OD600) of Agrobacterium culture, concentration of surfactant, and duration of flower bud dipping into the Agrobacterium suspension. The results showed that the floral dip method was most efficient when the flower buds were dipped into Agrobacterium suspension with OD600 = 0.8 and containing 5% sucrose and 0.1% Silwet L-77 for 30 s. This method enhanced the transformation efficiency at a rate of 12.78 ± 1.53%. The neomycin phosphotransferase II and green fluorescent protein genes with sizes of 550 and 736 bp, respectively, were confirmed by polymerase chain reaction. In addition, the transgenic plants were kanamycin resistant and fluorescent under ultraviolet light observation. This finding suggests that the proposed floral dip transformation provides new insights into efficient plant genetic engineering methods for yellow cosmos.

2.
Data Brief ; 38: 107302, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34458528

RESUMO

Tea Mosquito Bug (TMB), Helopeltis bradyi (Hemiptera: Miridae) is one of the major pest infesting tea and cocoa plantations worldwide. Developing olfaction-based control methods was urges as an alternative to commonly used but non-environmental friendly chemical pesticides. However, the molecular mechanisms underlying TMB reception mechanism are still lacking. Here, we collected a pooled male and female TMB antennae for RNA extraction followed by sequencing using the BGISEQ-500 platform and de novo assembly. TMB antennae RNA-seq data yielded 32,142 unigenes with N50 and GC (%) were 2322 and 40.25; subsequently. The RNA-seq data are available in GenBank Sequence Read Archive (SRA) database with accession number SRR13327229. De novo transcriptome analysis had identified several genes involved in TMB odorant reception includes; 39 OBPs (odorant binding proteins), 10 CSPs (chemosensory proteins), 81 Ors (odorant receptors), 1 Orcos (co-receptors), 9 SNMPs (sensory neuron membrane proteins), 3 GRs (gustatory receptors) and 4 IRs (ionotropic receptors). Our study presents the first RNA seq for TMB antennae, which serve the primary molecular resources data, which will facilitate further research to develop olfaction-based control methods, potentially contribute to TMB management strategies.

3.
Mol Biol Rep ; 48(2): 1697-1706, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33528727

RESUMO

Plant sucrose-phosphate synthase (SPS) contains a glycosyltransferase domain, which specifically catalyzes reactions with the nucleotide sugar uridine diphosphate glucose (UDP-G) as a donor substrate. Unlike plant SPS, bacterial SPS is predicted to bind other nucleotide sugars, such as adenosine diphosphate glucose (ADP-G). This study aimed to identify the UDP-G binding site of sugarcane (Saccharum officinarum) SPS (SoSPS1) and to improve its affinity for ADP-G by site-directed mutagenesis. To achieve targeted mutagenesis, amino acid distribution and comparative modeling studies were performed, followed by site-directed mutagenesis of SoSPS1 in the putative UDP-G binding motif. The N-terminal deletion of SoSPS1 (∆N-SoSPS1) was used for enzymatic analysis. The results showed that mutations in the R-X4-K, E-X7-E, and H-X5-V motifs significantly affect UDP-G and ADP-G binding. Mutations at R496 and K501 severely attenuate the affinity for UDP-G. Additionally, alanine substitutions at E591 and V570 decreased the UDP-G affinity but remarkably increased its ADP-G affinity. The R-X4-K motif plays a crucial role in the UDP-G binding site and catalytic activity of plant SPS; thus, its alteration to other amino acids was not viable. The E-X7-E and H-X5-V motifs may bind to the nucleotide glucose substrate, indicating that these motifs are involved in substrate specificity. These results agree with substrate docking simulations at the mutated residue positions, supporting the experimental results. These results demonstrate that mutation of E591 and V570 severely attenuated the UDP-G affinity, while retaining its activity against ADP-G, offering strategic insights into increasing sucrose synthesis and plant growth.


Assuntos
Adenosina Difosfato Glucose/química , Glucosiltransferases/química , Saccharum/enzimologia , Saccharum/genética , Uridina Difosfato Glucose/química , Adenosina Difosfato Glucose/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Escherichia coli/metabolismo , Expressão Gênica , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Cinética , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Mutação , N-Glicosil Hidrolases/metabolismo , Proteínas Recombinantes , Saccharum/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Uridina Difosfato Glucose/metabolismo
4.
Plants (Basel) ; 9(2)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041093

RESUMO

Sucrose phosphate synthase (SPS) is a key enzyme in sucrose synthesis, which controls sucrose content in plants. This study was designed to examine the efficacy of the overexpression of SoSPS1 gene on sucrose accumulation and carbon partitioning in transgenic sugarcane. The overexpression of SoSPS1 gene increased SPS activity and sucrose content in transgenic sugarcane leaves. More importantly, the overexpression enhanced soluble acid invertase (SAI) activity concomitant with the increase of glucose and fructose levels in the leaves, whereas sucrose synthase activity exhibited almost no change. In the stalk, a similar correlation was observed, but a higher correlation was noted between SPS activity and sugar content. These results suggest that SPS overexpression has both direct and indirect effects on sugar concentration and SAI activity in sugarcane. In addition, SPS overexpression resulted in a significant increase in plant height and stalk number in some transgenic lines compared to those in non-transgenic control. Taken together, these results strongly suggest that enhancing SPS activity is a useful strategy for improving sugarcane yield.

5.
Biophys Rev ; 10(2): 293-298, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29222806

RESUMO

Sucrose phosphate synthase (SPS) is believed to be the key enzyme for controlling the biosynthesis of sucrose. SPSs consist of a functional glycosyltransferase domain that shares conserved residues with the glycosyltransferase domain of sucrose biosynthesis-related protein. The formation of sucrose-6-phosphate is catalyzed by SPS with the transfer of a glycosyl group of uridine diphosphate glucose (UDP-G) as an activated donor sugar to a fructose-6-phosphate as a sugar acceptor. However, understanding of the mechanism of catalytic and substrate binding in SPS is very limited. Based on amino acid sequence alignments with several enzymes that belong to the glycosyltransferase family, the UDP-G binding sites that might be critical for catalytic mechanism were identified. Here, we report that single point mutation of R496, D498, and V570 located in the proposed UDP-G binding site led to less active or complete loss of enzyme activity. Through structure-based site-directed mutagenesis and biochemical studies, the results indicated that these residues contribute to the catalytic activity of plant SPS. Moreover, understanding of the UDP-G binding site provides an insight into new strategies for enzyme engineering and redesigning a catalytic mechanism for UDP.

6.
J Biochem ; 159(6): 599-607, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26826371

RESUMO

Sucrose phosphate synthase (SPS) catalyses the transfer of glycosyl group of uridine diphosphate glucose to fructose-6-phosphate to form sucrose-6-phosphate. Plant SPS plays a key role in photosynthetic carbon metabolisms, which activity is modulated by an allosteric activator glucose-6-phosphate (G6P). We produced recombinant sugarcane SPS using Escherichia coli and Sf9 insect cells to investigate its structure-function relationship. When expressed in E. coli, two forms of SPS with different sizes appeared; the larger was comparable in size with the authentic plant enzyme and the shorter was trimmed the N-terminal 20 kDa region off. In the insect cells, only enzyme with the authentic size was produced. We purified the trimmed SPS and the full size enzyme from insect cells and found their enzymatic properties differed significantly; the full size enzyme was activated allosterically by G6P, while the trimmed one showed a high activity even without G6P. We further introduced a series of N-terminal truncations up to 171 residue and found G6P-independent activity was enhanced by the truncation. These combined results indicated that the N-terminal region of sugarcane SPS is crucial for the allosteric regulation by G6P and may function like a suppressor domain for the enzyme activity.


Assuntos
Glucosiltransferases , Proteínas de Plantas , Saccharum/enzimologia , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Glucosiltransferases/biossíntese , Glucosiltransferases/química , Glucosiltransferases/genética , Glucosiltransferases/isolamento & purificação , Proteínas de Plantas/biossíntese , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Saccharum/genética , Células Sf9 , Spodoptera
7.
J Microbiol Biotechnol ; 22(5): 600-6, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22561852

RESUMO

Studies into the cell death program termed apoptosis have resulted in new information regarding how cells control and execute their own demise, including insights into the mechanism by which death-preventing factors can inhibit Bax-induced caspase activation. We investigated high temperature stress-induced cell death in Brassica rapa. Using a yeast functional screening from a Brassica rapa cDNA library, the BH5-127 EST clone encoding an apoptotic suppressor peptide was identified. However, a phylogenic tree showed that BH5-127 clusters within a clade containing SUMO-1 (Small Ubiquitin-like Modifier- 1). BH5-127 was confirmed similar to have function to SUMO-1 as Fas suppression. Expression of BH5-127 showed that substantial suppression of cell death survived on SD-galactose-Leu--Ura- medium. The results suggest that BrSE (Brassica rapa Sentrin EST, BH5-127) is one of the important regulatory proteins in programming cell death, especially in the seedling stage of Chinese cabbage.


Assuntos
Brassica rapa/metabolismo , Proteínas de Plantas/metabolismo , Proteína SUMO-1/metabolismo , Saccharomyces cerevisiae/citologia , Proteína X Associada a bcl-2/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Brassica rapa/classificação , Brassica rapa/genética , Morte Celular , Humanos , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/farmacologia , Proteína SUMO-1/genética , Proteína SUMO-1/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Proteína X Associada a bcl-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...