Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-424071

RESUMO

Remdesivir dry powder for inhalation was previously developed using thin film freezing (TFF). A single-dose 24-hour pharmacokinetic study in hamsters, a small animal model for SARS-CoV-2, demonstrated that pulmonary delivery of TFF remdesivir can achieve plasma remdesivir and GS-441524 levels higher than the reported EC50s of both remdesivir and GS-441524 (in human epithelial cells) over 20 hours. The half-life of GS-4412524 following dry powder insufflation was about 7 hours, suggesting the dosing regimen would be twice daily administration. Although the remdesivir-Captisol(R) (80/20 w/w) formulation showed faster and greater absorption of remdesivir and GS-4412524 in the lung, remdesivir-leucine (80/20 w/w) exhibited a greater Cmax with shorter Tmax and lower AUC of GS-441524, indicating lower total drug exposure is required to achieve a high effective concentration against SAR-CoV-2. In conclusion, remdesivir dry powder for inhalation would be a promising alternative dosage form for the treatment of COVID-19 disease.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-222109

RESUMO

Remdesivir exhibits in vitro activity against SARS-CoV-2 and was granted approval for Emergency Use. To maximize delivery to the lungs, we formulated remdesivir as a dry powder for inhalation using thin film freezing (TFF). TFF produces brittle matrix nanostructured aggregates that are sheared into respirable low-density microparticles upon aerosolization from a passive dry powder inhaler. In vitro aerodynamic testing demonstrated that drug loading and excipient type affected the aerosol performance of remdesivir. Remdesivir combined with optimal excipients exhibited desirable aerosol performance (up to 93.0% FPF; 0.82m MMAD). Remdesivir was amorphous after the TFF process, which benefitted drug dissolution in simulated lung fluid. TFF remdesivir formulations are stable after one-month storage at 25 {degrees}C/60%RH. In vivo pharmacokinetic evaluation showed that TFF-remdesivir-leucine was poorly absorbed into systemic circulation while TFF-remdesivir-Captisol(R) demonstrated increased systemic uptake compared to leucine. Remdesivir was hydrolyzed to the nucleoside analog GS-441524 in lung, and levels of GS-441524 were greater in lung with the leucine formulation compared to Captisol(R). In conclusion, TFF technology produces high potency remdesivir dry powder formulations for inhalation suitable to treat patients with COVID-19 on an outpatient basis and earlier in the disease course where effective antiviral therapy can reduce related morbidity and mortality.

3.
Clin Transl Med ; 7(1): 17, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29916009

RESUMO

BACKGROUND: Airway fibrin casts are clinically important complications of severe inhalational smoke-induced acute lung injury (ISIALI) for which reliable evidence-based therapy is lacking. Nebulized anticoagulants or a tissue plasminogen activator; tPA, has been advocated, but airway bleeding is a known and lethal potential complication. We posited that nebulized delivery of single chain urokinase plasminogen activator, scuPA, is well-tolerated and improves physiologic outcomes in ISIALI. To test this hypothesis, we nebulized scuPA or tPA and delivered these agents every 4 h to sheep with cotton smoke induced ISIALI that were ventilated by either adaptive pressure ventilation/controlled mandatory ventilation (APVcmv; Group 1, n = 14) or synchronized controlled mandatory ventilation (SCMV)/limited suctioning; Group 2, n = 32). Physiologic readouts of acute lung injury included arterial blood gas analyses, PaO2/FiO2 ratios, peak and plateau airway pressures, lung resistance and static lung compliance. Lung injury was further assessed by histologic scoring. Biochemical analyses included determination of antigenic and enzymographic uPA and tPA levels, plasminogen activator and plasminogen activator inhibitor-1 activities and D-dimer in bronchoalveolar lavage (BAL). Plasma levels of uPA, tPA antigens, D-dimers and α-macroglobulin-uPA complex levels were also assessed. RESULTS: In Group 1, tPA at the 2 mg dose was ineffective, but at 4 mg tPA or scuPA, the PaO2/FiO2 ratios, peak/plateau pressures improved during evolving injury (p < 0.01) without significant differences at 48 h. To improve delivery of the interventions, the experiments were repeated in Group 2 with limited suctioning/SCMV, which generally increased PAs in (BAL). In Group 2, tPA was ineffective, but scuPA (4 or 8 mg) improved physiologic outcomes (p < 0.01) and plateau pressures remained lower at 48 h. Airway bleeding occurred at 8 mg tPA. BAL plasminogen activator (PA) levels positively correlated with physiologic outcomes at 48 h. CONCLUSIONS: Physiologic outcomes improved in sheep in which better delivery of the PAs occurred. The benefits of nebulized scuPA were achieved without airway bleeding associated with tPA, but were transient and largely abrogated at 48 h, in part attributable to the progression and severity of ISIALI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...