Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5427, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696798

RESUMO

Hadal trenches are unique geological and ecological systems located along subduction zones. Earthquake-triggered turbidites act as efficient transport pathways of organic carbon (OC), yet remineralization and transformation of OC in these systems are not comprehensively understood. Here we measure concentrations and stable- and radiocarbon isotope signatures of dissolved organic and inorganic carbon (DOC, DIC) in the subsurface sediment interstitial water along the Japan Trench axis collected during the IODP Expedition 386. We find accumulation and aging of DOC and DIC in the subsurface sediments, which we interpret as enhanced production of labile dissolved carbon owing to earthquake-triggered turbidites, which supports intensive microbial methanogenesis in the trench sediments. The residual dissolved carbon accumulates in deep subsurface sediments and may continue to fuel the deep biosphere. Tectonic events can therefore enhance carbon accumulation and stimulate carbon transformation in plate convergent trench systems, which may accelerate carbon export into the subduction zones.

2.
PLoS One ; 16(9): e0253080, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34529668

RESUMO

The tropics are naturally vulnerable to watershed erosion. This region is rapidly growing (projected to be 50% of the global population by 2050) which exacerbates erosional issues by the subsequent land use change. The issue is particularly of interest on the many (~45,000) small tropical (<5,000 km2) islands, and their >115M residents, where ecotourism and sediment intolerant ecosystems such as coral reefs are the main driver of their economies. However, vulnerability to erosion and deposition is poorly quantified in these regions due to the misclassification or exclusion of small islands in coarse global analyses. We use the only vulnerability assessment method that connects watershed erosion and coastal deposition to compare locally sourced, high-resolution datasets (5 x 5 m) to satellite-collected, remotely sensed low-resolution datasets (463 x 463 m). We find that on the island scale (~52 km2) the difference in vulnerability calculated by the two methods is minor. On the watershed scale however, low-resolution datasets fail to accurately demonstrate watershed and coastal deposition vulnerability when compared to high-resolution analysis. Specifically, we find that anthropogenic development (roads and buildings) is poorly constrained at a global scale. Structures and roads are difficult to identify in heavily forested regions using satellite algorithms and the rapid, ongoing rate of development aggravates the issue. We recommend that end-users of this method obtain locally sourced anthropogenic development datasets for the best results while using low resolution datasets for the other variables. Fortunately, anthropogenic development data can be easily collected using community-based research or identified using satellite imagery by any level of user. Using high-resolution results, we identify a development trend across St. John and regions that are both high risk and possible targets for future development. Previously published modeled and measured sedimentation rates demonstrate the method is accurate when using low-resolution or high-resolution data but, anthropogenic development, watershed slope, and earthquake probability datasets should be of the highest resolution depending on the region specified.


Assuntos
Monitoramento Ambiental/instrumentação , Imagens de Satélites/métodos , Erosão do Solo , Algoritmos , Sedimentos Geológicos , Atividades Humanas , Ilhas , Dinâmica Populacional , Clima Tropical
4.
Sci Rep ; 11(1): 885, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441573

RESUMO

Over half of the global population is projected to live in the tropics by 2050. Sustainable land development will be challenged by enhanced sediment erosion and deposition, which can negatively impact water quality and ecosystem services in inland and coastal waterways. Existing erosion assessments treat watersheds and coastal zones separately, but we connect them in a two-part vulnerability index to watershed erosion and coastal deposition at 0.0004° (~ 45 m) resolution throughout the tropics. We use open-source datasets and a simple, GIS-based method geared toward tropical, novice end-users. Part 1 of the index reveals a majority of the tropics is vulnerable to erosion. Vulnerability is highest where there are co-occurrences of earthquakes, steep slopes, and high precipitation such as the Caribbean and Southeast Asia. In Part 2, we assess erosion vulnerability at 4 watersheds and include their coastal systems, which can enhance or diminish vulnerability of the entire system to coastal deposition.

5.
Sci Rep ; 9(1): 7101, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31068609

RESUMO

In 2017, three major hurricanes (Irma, Jose, and Maria) impacted the Northeastern Caribbean within a 2-week span. Hurricane waves can cause physical damage to coastal ecosystems, re-suspend and transport antecedent seafloor sediment, while the associated intense rainfall can yield large influxes of land-derived sediment to the coast (e.g. burial of ecosystems). To understand sedimentation provenance (terrestrial or marine) and changes induced by the hurricanes, we collected bathymetry surveys and sediment samples of Coral Bay, St. John, US Virgin Islands in August 2017, (pre-storms) and repeated it in November 2017 (post-storms). Comparison reveals morphologic seafloor changes and widespread aggradation with an average of ~25 cm of sediment deposited over a 1.28 km2 benthic zone. Despite an annual amount of precipitation between surveys, sediment yield modeling suggests watersheds contributed <0.2% of the total depositional volume. Considering locally established accumulation rates, this multi-hurricane event equates to ~1-3 centuries of deposition. Critical benthic communities (corals, seagrasses) can be partially or fully buried by deposits of this thickness and previous studies demonstrate that prolonged burial of similar organisms often leads to mortality. This study illuminates how storm events can result in major sediment deposition, which can significantly impact seafloor morphology and composition and benthic ecosystems.

6.
Sci Rep ; 9(1): 128, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30644410

RESUMO

Subsea hypersaline anoxic brine pools are among the most extreme habitable environments on Earth that offer clues to life on other planets. Brine is toxic to macrofauna as remotely operated vehicles commonly observe dead and preserved remains in brine pools. While brine pools are often assumed to be stable stratified systems, we show that underwater landslides can cause significant disturbances. Moreover, landslides create large-amplitude waves upon impact with the brine pool, similar to tsunami waves. We focus on the Orca Basin brine pool in the deepwater Gulf of Mexico, which contains numerous landslide deposits and blocks that originated from scarps several hundred meters above the brine pool. The impact of massive fast-moving landslides generated waves with amplitude on the order of 100 s of meters, which rival the largest known ocean waves. Brine waves can negatively affect biological communities and potentially overspill to spread hypersaline brine into surrounding basins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...