Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Electron Mater ; 6(2): 748-760, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38435803

RESUMO

Aerosol jet printing (AJP) is an advanced manufacturing technique for directly writing nanoparticle inks onto target substrates. It is an emerging reliable, efficient, and environmentally friendly fabrication route for thin film electronics and advanced semiconductor packaging. This fabrication technique is highly regarded for its rapid prototyping, the flexibility of design, and fine feature resolution. Nickel is an attractive high-temperature packaging material due to its electrical conductivity, magnetism, and corrosion resistance. In this work, we synthesized nickel nanoparticles and formulated an AJP ink, which was printed on various material surfaces. Thermal sintering experiments were performed on the samples to explore the redox behavior and to optimize the electrical performance of the devices. The nickel devices were heated to failure under an argon atmosphere, which was marked by a loss of reflectance and electrical properties due to the dewetting of the films. Additionally, a reduction mechanism was observed from these studies, which resembled that of nucleation and coalescence. Finally, multilayer graphene was grown on a custom-printed nickel thin film using chemical vapor deposition (CVD), establishing a fully additive manufacturing route to patterned graphene.

2.
ACS Appl Bio Mater ; 6(9): 3717-3725, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37655758

RESUMO

Three-dimensional (3D) tissue engineering (TE) is a prospective treatment that can be used to restore or replace damaged musculoskeletal tissues, such as articular cartilage. However, current challenges in TE include identifying materials that are biocompatible and have properties that closely match the mechanical properties and cellular microenvironment of the target tissue. Visualization and analysis of potential 3D porous scaffolds as well as the associated cell growth and proliferation characteristics present additional problems. This is particularly challenging for opaque scaffolds using standard optical imaging techniques. Here, we use graphene foam (GF) as a 3D porous biocompatible substrate, which is scalable, reproducible, and a suitable environment for ATDC5 cell growth and chondrogenic differentiation. ATDC5 cells are cultured, maintained, and stained with a combination of fluorophores and gold nanoparticles to enable correlative microscopic characterization techniques, which elucidate the effect of GF properties on cell behavior in a 3D environment. Most importantly, the staining protocol allows for direct imaging of cell growth and proliferation on opaque scaffolds using X-ray MicroCT, including imaging growth of cells within the hollow GF branches, which is not possible with standard fluorescence and electron microscopy techniques.


Assuntos
Grafite , Nanopartículas Metálicas , Ouro , Engenharia Tecidual , Técnicas de Cultura de Células em Três Dimensões , Imagem Óptica
3.
bioRxiv ; 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36993602

RESUMO

Three-dimensional (3D) tissue engineering (TE) is a prospective treatment that can be used to restore or replace damaged musculoskeletal tissues such as articular cartilage. However, current challenges in TE include identifying materials that are biocompatible and have properties that closely match the mechanical properties and cellular environment of the target tissue, while allowing for 3D tomography of porous scaffolds as well as their cell growth and proliferation characterization. This is particularly challenging for opaque scaffolds. Here we use graphene foam (GF) as a 3D porous biocompatible substrate which is scalable, reproduceable, and a suitable environment for ATDC5 cell growth and chondrogenic differentiation. ATDC5 cells are cultured, maintained, and stained with a combination of fluorophores and gold nanoparticle to enable correlative microscopic characterization techniques, which elucidate the effect of GF properties on cell behavior in a three-dimensional environment. Most importantly, our staining protocols allows for direct imaging of cell growth and proliferation on opaque GF scaffolds using X-ray MicroCT, including imaging growth of cells within the hollow GF branches which is not possible with standard fluorescence and electron microscopy techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...