Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 5(2): 102936, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735042

RESUMO

GABAergic interneurons are inhibitory neurons of the CNS, playing a fundamental role in neural circuitry and activity. Here, we provide a robust protocol for the successful enrichment of human cerebellar GABAergic interneurons from human induced pluripotent stem cells (iPSCs) and measuring intracellular calcium transients. We describe in detail steps for culturing iPSCs; generating embryoid bodies; and differentiating and enriching for cerebellar GABAergic neurons (cGNs), with precise steps for their molecular characterization. We then detail the procedure for adeno-associated virus-mediated transduction of cGNs with genetically encoded calcium indicators, followed by intracellular calcium imaging and analyses. For complete details on the use and execution of this protocol, please refer to Pilotto et al.1.

3.
Neurol Sci ; 45(2): 749-767, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38087143

RESUMO

Sleep abnormalities may represent an independent risk factor for neurodegeneration. An international expert group convened in 2021 to discuss the state-of-the-science in this domain. The present article summarizes the presentations and discussions concerning the importance of a strategy for studying sleep- and circadian-related interventions for early detection and prevention of neurodegenerative diseases. An international expert group considered the current state of knowledge based on the most relevant publications in the previous 5 years; discussed the current challenges in the field of relationships among sleep, sleep disorders, and neurodegeneration; and identified future priorities. Sleep efficiency and slow wave activity during non-rapid eye movement (NREM) sleep are decreased in cognitively normal middle-aged and older adults with Alzheimer's disease (AD) pathology. Sleep deprivation increases amyloid-ß (Aß) concentrations in the interstitial fluid of experimental animal models and in cerebrospinal fluid in humans, while increased sleep decreases Aß. Obstructive sleep apnea (OSA) is a risk factor for dementia. Studies indicate that positive airway pressure (PAP) treatment should be started in patients with mild cognitive impairment or AD and comorbid OSA. Identification of other measures of nocturnal hypoxia and sleep fragmentation could better clarify the role of OSA as a risk factor for neurodegeneration. Concerning REM sleep behavior disorder (RBD), it will be crucial to identify the subset of RBD patients who will convert to a specific neurodegenerative disorder. Circadian sleep-wake rhythm disorders (CSWRD) are strong predictors of caregiver stress and institutionalization, but the absence of recommendations or consensus statements must be considered. Future priorities include to develop and validate existing and novel comprehensive assessments of CSWRD in patients with/at risk for dementia. Strategies for studying sleep-circadian-related interventions for early detection/prevention of neurodegenerative diseases are required. CSWRD evaluation may help to identify additional biomarkers for phenotyping and personalizing treatment of neurodegeneration.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Transtorno do Comportamento do Sono REM , Apneia Obstrutiva do Sono , Pessoa de Meia-Idade , Animais , Humanos , Idoso , Sono , Peptídeos beta-Amiloides/líquido cefalorraquidiano
4.
Neuron ; 111(16): 2523-2543.e10, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37321222

RESUMO

Toxic proteinaceous deposits and alterations in excitability and activity levels characterize vulnerable neuronal populations in neurodegenerative diseases. Using in vivo two-photon imaging in behaving spinocerebellar ataxia type 1 (Sca1) mice, wherein Purkinje neurons (PNs) degenerate, we identify an inhibitory circuit element (molecular layer interneurons [MLINs]) that becomes prematurely hyperexcitable, compromising sensorimotor signals in the cerebellum at early stages. Mutant MLINs express abnormally elevated parvalbumin, harbor high excitatory-to-inhibitory synaptic density, and display more numerous synaptic connections on PNs, indicating an excitation/inhibition imbalance. Chemogenetic inhibition of hyperexcitable MLINs normalizes parvalbumin expression and restores calcium signaling in Sca1 PNs. Chronic inhibition of mutant MLINs delayed PN degeneration, reduced pathology, and ameliorated motor deficits in Sca1 mice. Conserved proteomic signature of Sca1 MLINs, shared with human SCA1 interneurons, involved the higher expression of FRRS1L, implicated in AMPA receptor trafficking. We thus propose that circuit-level deficits upstream of PNs are one of the main disease triggers in SCA1.


Assuntos
Células de Purkinje , Ataxias Espinocerebelares , Camundongos , Humanos , Animais , Células de Purkinje/metabolismo , Parvalbuminas/metabolismo , Proteômica , Camundongos Transgênicos , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Cerebelo/metabolismo , Interneurônios/metabolismo , Degeneração Neural/patologia , Modelos Animais de Doenças , Ataxina-1 , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo
5.
Front Cell Neurosci ; 17: 1086895, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006471

RESUMO

The proper functioning of the cell clearance machinery is critical for neuronal health within the central nervous system (CNS). In normal physiological conditions, the cell clearance machinery is actively involved in the elimination of misfolded and toxic proteins throughout the lifetime of an organism. The highly conserved and regulated pathway of autophagy is one of the important processes involved in preventing and neutralizing pathogenic buildup of toxic proteins that could eventually lead to the development of neurodegenerative diseases (NDs) such as Alzheimer's disease or Amyotrophic lateral sclerosis (ALS). The most common genetic cause of ALS and frontotemporal dementia (FTD) is a hexanucleotide expansion consisting of GGGGCC (G4C2) repeats in the chromosome 9 open reading frame 72 gene (C9ORF72). These abnormally expanded repeats have been implicated in leading to three main modes of disease pathology: loss of function of the C9ORF72 protein, the generation of RNA foci, and the production of dipeptide repeat proteins (DPRs). In this review, we discuss the normal physiological role of C9ORF72 in the autophagy-lysosome pathway (ALP), and present recent research deciphering how dysfunction of the ALP synergizes with C9ORF72 haploinsufficiency, which together with the gain of toxic mechanisms involving hexanucleotide repeat expansions and DPRs, drive the disease process. This review delves further into the interactions of C9ORF72 with RAB proteins involved in endosomal/lysosomal trafficking, and their role in regulating various steps in autophagy and lysosomal pathways. Lastly, the review aims to provide a framework for further investigations of neuronal autophagy in C9ORF72-linked ALS-FTD as well as other neurodegenerative diseases.

6.
Brain ; 146(9): 3783-3799, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36928391

RESUMO

Amyotrophic lateral sclerosis is a progressive neurodegenerative disease that affects motor neurons in the spinal cord, brainstem and motor cortex, leading to paralysis and eventually to death within 3-5 years of symptom onset. To date, no cure or effective therapy is available. The role of chronic endoplasmic reticulum stress in the pathophysiology of amyotrophic lateral sclerosis, as well as a potential drug target, has received increasing attention. Here, we investigated the mode of action and therapeutic effect of the endoplasmic reticulum-resident protein cerebral dopamine neurotrophic factor in three preclinical models of amyotrophic lateral sclerosis, exhibiting different disease development and aetiology: (i) the conditional choline acetyltransferase-tTA/TRE-hTDP43-M337V rat model previously described; (ii) the widely used SOD1-G93A mouse model; and (iii) a novel slow-progressive TDP43-M337V mouse model. To specifically analyse the endoplasmic reticulum stress response in motor neurons, we used three main methods: (i) primary cultures of motor neurons derived from embryonic Day 13 embryos; (ii) immunohistochemical analyses of spinal cord sections with choline acetyltransferase as spinal motor neuron marker; and (iii) quantitative polymerase chain reaction analyses of lumbar motor neurons isolated via laser microdissection. We show that intracerebroventricular administration of cerebral dopamine neurotrophic factor significantly halts the progression of the disease and improves motor behaviour in TDP43-M337V and SOD1-G93A rodent models of amyotrophic lateral sclerosis. Cerebral dopamine neurotrophic factor rescues motor neurons in vitro and in vivo from endoplasmic reticulum stress-associated cell death and its beneficial effect is independent of genetic disease aetiology. Notably, cerebral dopamine neurotrophic factor regulates the unfolded protein response initiated by transducers IRE1α, PERK and ATF6, thereby enhancing motor neuron survival. Thus, cerebral dopamine neurotrophic factor holds great promise for the design of new rational treatments for amyotrophic lateral sclerosis.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Camundongos , Ratos , Animais , Esclerose Lateral Amiotrófica/metabolismo , Endorribonucleases/metabolismo , Endorribonucleases/farmacologia , Endorribonucleases/uso terapêutico , Superóxido Dismutase-1/genética , Colina O-Acetiltransferase/metabolismo , Colina O-Acetiltransferase/farmacologia , Colina O-Acetiltransferase/uso terapêutico , Dopamina/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Neurônios Motores/metabolismo , Estresse do Retículo Endoplasmático , Fatores de Crescimento Neural/metabolismo
7.
J Pers Med ; 12(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36556200

RESUMO

Neurodegenerative disorders (NDDs), such as Alzheimer's disease (AD) and Parkinson's Disease (PD), are a group of heterogeneous diseases that mainly affect central nervous system (CNS) functions. A subset of NDDs exhibit CNS dysfunction and muscle degeneration, as observed in Gangliosidosis 1 (GM1) and late stages of PD. Neuromuscular disorders (NMDs) are a group of diseases in which patients show primary progressive muscle weaknesses, including Duchenne Muscular Dystrophy (DMD), Pompe disease, and Spinal Muscular Atrophy (SMA). NDDs and NMDs typically have a genetic component, which affects the physiological functioning of critical cellular processes, leading to pathogenesis. Currently, there is no cure or efficient treatment for most of these diseases. More than 200 clinical trials have been completed or are currently underway in order to establish safety, tolerability, and efficacy of promising gene therapy approaches. Thus, gene therapy-based therapeutics, including viral or non-viral delivery, are very appealing for the treatment of NDDs and NMDs. In particular, adeno-associated viral vectors (AAV) are an attractive option for gene therapy for NDDs and NMDs. However, limitations have been identified after systemic delivery, including the suboptimal capacity of these therapies to traverse the blood-brain barrier (BBB), degradation of the particles during the delivery, high reactivity of the patient's immune system during the treatment, and the potential need for redosing. To circumvent these limitations, several preclinical and clinical studies have suggested intrathecal (IT) delivery to target the CNS and peripheral organs via cerebrospinal fluid (CSF). CSF administration can vastly improve the delivery of small molecules and drugs to the brain and spinal cord as compared to systemic delivery. Here, we review AAV biology and vector design elements, different therapeutic routes of administration, and highlight CSF delivery as an attractive route of administration. We discuss the different aspects of neuromuscular and neurodegenerative diseases, such as pathogenesis, the landscape of mutations, and the biological processes associated with the disease. We also describe the hallmarks of NDDs and NMDs as well as discuss current therapeutic approaches and clinical progress in viral and non-viral gene therapy and enzyme replacement strategies for those diseases.

8.
Acta Neuropathol ; 144(5): 939-966, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36121477

RESUMO

ER stress signaling is linked to the pathophysiological and clinical disease manifestations in amyotrophic lateral sclerosis (ALS). Here, we have investigated ER stress-induced adaptive mechanisms in C9ORF72-ALS/FTD, focusing on uncovering early endogenous neuroprotective mechanisms and the crosstalk between pathological and adaptive responses in disease onset and progression. We provide evidence for the early onset of ER stress-mediated adaptive response in C9ORF72 patient-derived motoneurons (MNs), reflected by the elevated increase in GRP75 expression. These transiently increased GRP75 levels enhance ER-mitochondrial association, boosting mitochondrial function and sustaining cellular bioenergetics during the initial stage of disease, thereby counteracting early mitochondrial deficits. In C9orf72 rodent neurons, an abrupt reduction in GRP75 expression coincided with the onset of UPR, mitochondrial dysfunction and the emergence of PolyGA aggregates, which co-localize with GRP75. Similarly, the overexpression of PolyGA in WT cortical neurons or C9ORF72 patient-derived MNs led to the sequestration of GRP75 within PolyGA inclusions, resulting in mitochondrial calcium (Ca2+) uptake impairments. Corroborating these findings, we found that PolyGA aggregate-bearing human post-mortem C9ORF72 hippocampal dentate gyrus neurons not only display reduced expression of GRP75 but also exhibit GRP75 sequestration within inclusions. Sustaining high GRP75 expression in spinal C9orf72 rodent MNs specifically prevented ER stress, normalized mitochondrial function, abrogated PolyGA accumulation in spinal MNs, and ameliorated ALS-associated behavioral phenotype. Taken together, our results are in line with the notion that neurons in C9ORF72-ALS/FTD are particularly susceptible to ER-mitochondrial dysfunction and that GRP75 serves as a critical endogenous neuroprotective factor. This neuroprotective pathway, is eventually targeted by PolyGA, leading to GRP75 sequestration, and its subsequent loss of function at the MAM, compromising mitochondrial function and promoting disease onset.


Assuntos
Esclerose Lateral Amiotrófica , Estresse do Retículo Endoplasmático , Demência Frontotemporal , Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Cálcio/metabolismo , Demência Frontotemporal/genética , Proteínas de Choque Térmico HSP70 , Humanos , Proteínas de Membrana , Neurônios Motores/patologia , Polirribonucleotídeos
9.
Front Cell Neurosci ; 15: 637548, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679328

RESUMO

The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is a hexanucleotide expansion in the chromosome 9 open reading frame 72 gene (C9ORF72). This hexanucleotide expansion consists of GGGGCC (G4C2) repeats that have been implicated to lead to three main modes of disease pathology: loss of function of the C9ORF72 protein, the generation of RNA foci, and the production of dipeptide repeat proteins (DPRs) through repeat-associated non-AUG (RAN) translation. Five different DPRs are currently known to be formed: glycine-alanine (GA) and glycine-arginine (GR) from the sense strand, proline-alanine (PA), and proline-arginine (PR) from the antisense strand, and glycine-proline (GP) from both strands. The exact contribution of each DPR to disease pathology is currently under intense scrutiny and is still poorly understood. However, recent advances in both neuropathological and cellular studies have provided us with clues enabling us to better understand the effect of individual DPRs on disease pathogenesis. In this review, we compile the current knowledge of specific DPR involvement on disease development and highlight recent advances, such as the impact of arginine-rich DPRs on nucleolar protein quality control, the correlation of poly-GR with neurodegeneration, and the possible involvement of chimeric DPR species. Further, we discuss recent findings regarding the mechanisms of RAN translation, its modulators, and other promising therapeutic options.

10.
Neuron ; 108(4): 784-796.e3, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33022226

RESUMO

Mordes et al. (2020) did not detect the survival or motor phenotypes in C9orf72 BAC transgenic mice originally described by Liu et al. (2016). We discuss methodological differences between the Mordes and Liu studies, several additional studies in which survival and motor phenotypes were found, and possible environmental and genetic effects. First, Nguyen et al. (2020) showed robust ALS/FTD phenotypes in C9-BAC versus non-transgenic (NT) mice and that α-GA1 treatment improved survival, behavior, and neurodegeneration. The groups of Gelbard and Saxena also show decreased survival of C9-BAC versus NT mice and neuropathological and behavioral deficits similar to those shown by Liu et al. (2016). Although FVB/N mice can have seizures, increases in seizure severity and death of C9 and NT animals, which may mask C9 disease phenotypes, have been observed in recent C9-500 FVB/NJ-bred cohorts. In summary, we provide an update on phenotypes seen in FVB C9-BAC mice and additional details to successfully use this model. This Matters Arising Response paper addresses the Mordes et al. (2020) Matters Arising paper, published concurrently in Neuron.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/genética , Animais , Proteína C9orf72/genética , Expansão das Repetições de DNA , Modelos Animais de Doenças , Demência Frontotemporal/genética , Camundongos , Camundongos Transgênicos , Fenótipo
11.
12.
J Neurosci ; 40(45): 8637-8651, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33087472

RESUMO

Functional recovery after stroke is associated with a remapping of neural circuits. This reorganization is often associated with low-frequency, high-amplitude oscillations in the peri-infarct zone in both rodents and humans. These oscillations are reminiscent of sleep slow waves (SW) and suggestive of a role for sleep in brain plasticity that occur during stroke recovery; however, direct evidence is missing. Using a stroke model in male mice, we showed that stroke was followed by a transient increase in NREM sleep accompanied by reduced amplitude and slope of ipsilateral NREM sleep SW. We next used 5 ms optical activation of Channelrhodopsin 2-expressing pyramidal neurons, or 200 ms silencing of Archeorhodopsin T-expressing pyramidal neurons, to generate local cortical UP, or DOWN, states, respectively, both sharing similarities with spontaneous NREM SW in freely moving mice. Importantly, we found that single optogenetically evoked SW (SWopto) in the peri-infarct zone, randomly distributed during sleep, significantly improved fine motor movements of the limb corresponding to the sensorimotor stroke lesion site compared with spontaneous recovery and control conditions, while motor strength remained unchanged. In contrast, SWopto during wakefulness had no effect. Furthermore, chronic SWopto during sleep were associated with local axonal sprouting as revealed by the increase of anatomic presynaptic and postsynaptic markers in the peri-infarct zone and corresponding contralesional areas to cortical circuit reorganization during stroke recovery. These results support a role for sleep SW in cortical circuit plasticity and sensorimotor recovery after stroke and provide a clinically relevant framework for rehabilitation strategies using neuromodulation during sleep.SIGNIFICANCE STATEMENT Brain stroke is one of the leading causes of death and major disabilities in the elderly worldwide. A better understanding of the pathophysiological mechanisms underlying spontaneous brain plasticity after stroke, together with an optimization of rehabilitative strategies, are essential to improve stroke treatments. Here, we investigate the role of optogenetically induced sleep slow waves in an animal model of ischemic stroke and identify sleep as a window for poststroke intervention that promotes neuroplasticity and facilitates sensorimotor recovery.


Assuntos
AVC Isquêmico/fisiopatologia , Plasticidade Neuronal , Sono de Ondas Lentas , Reabilitação do Acidente Vascular Cerebral , Animais , Axônios/patologia , Córtex Cerebral/fisiopatologia , Infarto Cerebral/fisiopatologia , Eletroencefalografia , AVC Isquêmico/psicologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Força Muscular , Rede Nervosa/fisiopatologia , Optogenética , Desempenho Psicomotor , Células Piramidais , Recuperação de Função Fisiológica
13.
Neuron ; 107(2): 202-204, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32702342

RESUMO

Dipeptide repeat proteins (DPRs) occur via repeat-associated non-AUG (RAN) translation. In this issue of Neuron, McEachin et al. (2020) show that the aggregation-prone poly(GA)-rich chimeric DPRs determine divergent poly(GP) mediated pathology between C9ALS/FTD and SCA36.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Proteína C9orf72 , Dipeptídeos , Humanos
14.
Front Neurosci ; 14: 293, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32300292

RESUMO

Spinocerebellar ataxias (SCAs) affect the cerebellum and its afferent and efferent systems that degenerate during disease progression. In the cerebellum, Purkinje cells (PCs) are the most vulnerable and their prominent loss in the late phase of the pathology is the main characteristic of these neurodegenerative diseases. Despite the constant advancement in the discovery of affected molecules and cellular pathways, a comprehensive description of the events leading to the development of motor impairment and degeneration is still lacking. However, in the last years the possible causal role for altered cerebellar development and neuronal circuit wiring in SCAs has been emerging. Not only wiring and synaptic transmission deficits are a common trait of SCAs, but also preventing the expression of the mutant protein during cerebellar development seems to exert a protective role. By discussing this tight relationship between cerebellar development and SCAs, in this review, we aim to highlight the importance of cerebellar circuitry for the investigation of SCAs.

15.
Sci Transl Med ; 11(523)2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852800

RESUMO

Motor neuron-specific microRNA-218 (miR-218) has recently received attention because of its roles in mouse development. However, miR-218 relevance to human motor neuron disease was not yet explored. Here, we demonstrate by neuropathology that miR-218 is abundant in healthy human motor neurons. However, in amyotrophic lateral sclerosis (ALS) motor neurons, miR-218 is down-regulated and its mRNA targets are reciprocally up-regulated (derepressed). We further identify the potassium channel Kv10.1 as a new miR-218 direct target that controls neuronal activity. In addition, we screened thousands of ALS genomes and identified six rare variants in the human miR-218-2 sequence. miR-218 gene variants fail to regulate neuron activity, suggesting the importance of this small endogenous RNA for neuronal robustness. The underlying mechanisms involve inhibition of miR-218 biogenesis and reduced processing by DICER. Therefore, miR-218 activity in motor neurons may be susceptible to failure in human ALS, suggesting that miR-218 may be a potential therapeutic target in motor neuron disease.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , MicroRNAs/metabolismo , Neuropatologia/métodos , Esclerose Lateral Amiotrófica/genética , Animais , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Camundongos , MicroRNAs/genética , Neurônios Motores/metabolismo , Neurônios/metabolismo
16.
Mol Cell Proteomics ; 17(7): 1324-1336, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29661852

RESUMO

Insects adapt to plant protease inhibitors (PIs) present in their diet by differentially regulating multiple digestive proteases. However, mechanisms regulating protease gene expression in insects are largely enigmatic. Ingestion of multi-domain recombinant Capsicum annuum protease inhibitor-7 (CanPI-7) arrests growth and development of Helicoverpa armigera (Lepidoptera: Noctuidae). Using de novo RNA sequencing and proteomic analysis, we examined the response of H. armigera larvae fed on recombinant CanPI-7 at different time intervals. Here, we present evidence supporting a dynamic transition in H. armigera protease expression on CanPI-7 feeding with general down-regulation of protease genes at early time points (0.5 to 6 h) and significant up-regulation of specific trypsin, chymotrypsin and aminopeptidase genes at later time points (12 to 48 h). Further, coexpression of H. armigera endogenous PIs with several digestive protease genes were apparent. In addition to the differential expression of endogenous H. armigera PIs, we also observed a distinct novel isoform of endogenous PI in CanPI-7 fed H. armigera larvae. Based on present and earlier studies, we propose potential mechanism of protease regulation in H. armigera and subsequent adaptation strategy to cope with anti-nutritional components of plants.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Mariposas/genética , Mariposas/metabolismo , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/metabolismo , Proteômica/métodos , Animais , Sistema Digestório/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Modelos Biológicos , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
17.
Nat Rev Neurol ; 13(8): 477-491, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28731040

RESUMO

The clinical manifestation of neurodegenerative diseases is initiated by the selective alteration in the functionality of distinct neuronal populations. The pathology of many neurodegenerative diseases includes accumulation of misfolded proteins in the brain. In physiological conditions, the proteostasis network maintains normal protein folding, trafficking and degradation; alterations in this network - particularly disturbances to the function of endoplasmic reticulum (ER) - are thought to contribute to abnormal protein aggregation. ER stress triggers a signalling reaction known as the unfolded protein response (UPR), which induces adaptive programmes that improve protein folding and promote quality control mechanisms and degradative pathways or can activate apoptosis when damage is irreversible. In this Review, we discuss the latest advances in defining the functional contribution of ER stress to brain diseases, including novel evidence that relates the UPR to synaptic function, which has implications for cognition and memory. A complex concept is emerging wherein the consequences of ER stress can differ drastically depending on the disease context and the UPR signalling pathway that is altered. Strategies to target specific components of the UPR using small molecules and gene therapy are in development, and promise interesting avenues for future interventions to delay or stop neurodegeneration.


Assuntos
Estresse do Retículo Endoplasmático , Inflamação/metabolismo , Degeneração Neural/metabolismo , Doenças Neurodegenerativas/metabolismo , Plasticidade Neuronal , Transdução de Sinais , Resposta a Proteínas não Dobradas , Animais , Humanos
18.
Mol Neurobiol ; 54(4): 3062-3077, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27037575

RESUMO

Hexanucleotide repeat expansions in the C9ORF72 gene are causally associated with frontotemporal lobar dementia (FTLD) and/or amyotrophic lateral sclerosis (ALS). The physiological function of the normal C9ORF72 protein remains unclear. In this study, we characterized the subcellular localization of C9ORF72 to processing bodies (P-bodies) and its recruitment to stress granules (SGs) upon stress-related stimuli. Gain of function and loss of function experiments revealed that the long isoform of C9ORF72 protein regulates SG assembly. CRISPR/Cas9-mediated knockdown of C9ORF72 completely abolished SG formation, negatively impacted the expression of SG-associated proteins such as TIA-1 and HuR, and accelerated cell death. Loss of C9ORF72 expression further compromised cellular recovery responses after the removal of stress. Additionally, mimicking the pathogenic condition via the expression of hexanucleotide expansion upstream of C9ORF72 impaired the expression of the C9ORF72 protein, caused an abnormal accumulation of RNA foci, and led to the spontaneous formation of SGs. Our study identifies a novel function for normal C9ORF72 in SG assembly and sheds light into how the mutant expansions might impair SG formation and cellular-stress-related adaptive responses.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Proteínas/metabolismo , Estresse Fisiológico , Animais , Especificidade de Anticorpos/imunologia , Proteína C9orf72 , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Expansão das Repetições de DNA/genética , Corpos de Inclusão/metabolismo , Camundongos , Neurônios/metabolismo , Transporte Proteico , Proteínas/imunologia
20.
Sci Rep ; 6: 33779, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27671416

RESUMO

Chromatin architecture and dynamics are regulated by various histone and non-histone proteins. The matrix attachment region binding proteins (MARBPs) play a central role in chromatin organization and function through numerous regulatory proteins. In the present study, we demonstrate that nuclear matrix protein SMAR1 orchestrates global gene regulation as determined by massively parallel ChIP-sequencing. The study revealed that SMAR1 binds to T(C/G) repeat and targets genes involved in diverse biological pathways. We observe that SMAR1 binds and targets distinctly different genes based on the availability of p53. Our data suggest that SMAR1 binds and regulates one of the imperative microRNA clusters in cancer and metastasis, miR-371-373. It negatively regulates miR-371-373 transcription as confirmed by SMAR1 overexpression and knockdown studies. Further, deletion studies indicate that a ~200 bp region in the miR-371-373 promoter is necessary for SMAR1 binding and transcriptional repression. Recruitment of HDAC1/mSin3A complex by SMAR1, concomitant with alteration of histone marks results in downregulation of the miRNA cluster. The regulation of miR-371-373 by SMAR1 inhibits breast cancer tumorigenesis and metastasis as determined by in vivo experiments. Overall, our study highlights the binding of SMAR1 to T(C/G) repeat and its role in cancer through miR-371-373.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...