Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(7): e1011946, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018334

RESUMO

Dynamical system models typically involve numerous input parameters whose "effects" and orthogonality need to be quantified through sensitivity analysis, to identify inputs contributing the greatest uncertainty. Whilst prior art has compared total-order estimators' role in recovering "true" effects, assessing their ability to recover robust parameter orthogonality for use in identifiability metrics has not been investigated. In this paper, we perform: (i) an assessment using a different class of numerical models representing the cardiovascular system, (ii) a wider evaluation of sampling methodologies and their interactions with estimators, (iii) an investigation of the consequences of permuting estimators and sampling methodologies on input parameter orthogonality, (iv) a study of sample convergence through resampling, and (v) an assessment of whether positive outcomes are sustained when model input dimensionality increases. Our results indicate that Jansen or Janon estimators display efficient convergence with minimum uncertainty when coupled with Sobol and the lattice rule sampling methods, making them prime choices for calculating parameter orthogonality and influence. This study reveals that global sensitivity analysis is convergence driven. Unconverged indices are subject to error and therefore the true influence or orthogonality of the input parameters are not recovered. This investigation importantly clarifies the interactions of the estimator and the sampling methodology by reducing the associated ambiguities, defining novel practices for modelling in the life sciences.

2.
Am J Physiol Heart Circ Physiol ; 327(1): H182-H190, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38787386

RESUMO

Murray's law has been viewed as a fundamental law of physiology. Relating blood flow ([Formula: see text]) to vessel diameter (D) ([Formula: see text]·âˆ·D3), it dictates minimum lumen area (MLA) targets for coronary bifurcation percutaneous coronary intervention (PCI). The cubic exponent (3.0), however, has long been disputed, with alternative theoretical derivations, arguing this should be closer to 2.33 (7/3). The aim of this meta-analysis was to quantify the optimum flow-diameter exponent in human and mammalian coronary arteries. We conducted a systematic review and meta-analysis of all articles quantifying an optimum flow-diameter exponent for mammalian coronary arteries within the Cochrane library, PubMed Medline, Scopus, and Embase databases on 20 March 2023. A random-effects meta-analysis was used to determine a pooled flow-diameter exponent. Risk of bias was assessed with the National Institutes of Health (NIH) quality assessment tool, funnel plots, and Egger regression. From a total of 4,772 articles, 18 were suitable for meta-analysis. Studies included data from 1,070 unique coronary trees, taken from 372 humans and 112 animals. The pooled flow diameter exponent across both epicardial and transmural arteries was 2.39 (95% confidence interval: 2.24-2.54; I2 = 99%). The pooled exponent of 2.39 showed very close agreement with the theoretical exponent of 2.33 (7/3) reported by Kassab and colleagues. This exponent may provide a more accurate description of coronary morphometric scaling in human and mammalian coronary arteries, as compared with Murray's original law. This has important implications for the assessment, diagnosis, and interventional treatment of coronary artery disease.


Assuntos
Circulação Coronária , Vasos Coronários , Animais , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/diagnóstico por imagem , Modelos Cardiovasculares , Intervenção Coronária Percutânea
3.
Comput Biol Med ; 173: 108299, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537564

RESUMO

BACKGROUND: Myocardial ischaemia results from insufficient coronary blood flow. Computed virtual fractional flow reserve (vFFR) allows quantification of proportional flow loss without the need for invasive pressure-wire testing. In the current study, we describe a novel, conductivity model of side branch flow, referred to as 'leak'. This leak model is a function of taper and local pressure, the latter of which may change radically when focal disease is present. This builds upon previous techniques, which either ignore side branch flow, or rely purely on anatomical factors. This study aimed to describe a new, conductivity model of side branch flow and compare this with established anatomical models. METHODS AND RESULTS: The novel technique was used to quantify vFFR, distal absolute flow (Qd) and microvascular resistance (CMVR) in 325 idealised 1D models of coronary arteries, modelled from invasive clinical data. Outputs were compared to an established anatomical model of flow. The conductivity model correlated and agreed with the reference model for vFFR (r = 0.895, p < 0.0001; +0.02, 95% CI 0.00 to + 0.22), Qd (r = 0.959, p < 0.0001; -5.2 mL/min, 95% CI -52.2 to +13.0) and CMVR (r = 0.624, p < 0.0001; +50 Woods Units, 95% CI -325 to +2549). CONCLUSION: Agreement between the two techniques was closest for vFFR, with greater proportional differences seen for Qd and CMVR. The conductivity function assumes vessel taper was optimised for the healthy state and that CMVR was not affected by local disease. The latter may be addressed with further refinement of the technique or inferred from complementary image data. The conductivity technique may represent a refinement of current techniques for modelling coronary side-branch flow. Further work is needed to validate the technique against invasive clinical data.


Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Reserva Fracionada de Fluxo Miocárdico , Humanos , Vasos Coronários , Angiografia Coronária/métodos , Hemodinâmica , Valor Preditivo dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...